Suppr超能文献

全贝叶斯变分推理深度状态空间模型

Fully Bayesian VIB-DeepSSM.

作者信息

Adams Jadie, Elhabian Shireen Y

机构信息

Scientific Computing and Imaging Institute, University of Utah, UT, USA.

Kahlert School of Computing, University of Utah, UT, USA.

出版信息

Med Image Comput Comput Assist Interv. 2023 Oct;14222:346-356. doi: 10.1007/978-3-031-43898-1_34. Epub 2023 Oct 1.

Abstract

Statistical shape modeling (SSM) enables population-based quantitative analysis of anatomical shapes, informing clinical diagnosis. Deep learning approaches predict correspondence-based SSM directly from unsegmented 3D images but require calibrated uncertainty quantification, motivating Bayesian formulations. Variational information bottleneck DeepSSM (VIB-DeepSSM) is an effective, principled framework for predicting probabilistic shapes of anatomy from images with aleatoric uncertainty quantification. However, VIB is only half-Bayesian and lacks epistemic uncertainty inference. We derive a fully Bayesian VIB formulation and demonstrate the efficacy of two scalable implementation approaches: concrete dropout and batch ensemble. Additionally, we introduce a novel combination of the two that further enhances uncertainty calibration via multimodal marginalization. Experiments on synthetic shapes and left atrium data demonstrate that the fully Bayesian VIB network predicts SSM from images with improved uncertainty reasoning without sacrificing accuracy.

摘要

统计形状建模(SSM)能够对解剖形状进行基于人群的定量分析,为临床诊断提供依据。深度学习方法可直接从未分割的3D图像预测基于对应关系的SSM,但需要校准不确定性量化,这推动了贝叶斯公式的发展。变分信息瓶颈深度SSM(VIB-DeepSSM)是一个有效的、有原则的框架,用于从具有随机不确定性量化的图像中预测解剖结构的概率形状。然而,VIB只是半贝叶斯的,缺乏认知不确定性推理。我们推导了一个完全贝叶斯的VIB公式,并展示了两种可扩展实现方法的有效性:具体失活和批集成。此外,我们引入了两者的新颖组合,通过多模态边缘化进一步增强不确定性校准。对合成形状和左心房数据的实验表明,完全贝叶斯VIB网络能够从图像中预测SSM,在不牺牲准确性的情况下改善不确定性推理。

相似文献

1
Fully Bayesian VIB-DeepSSM.全贝叶斯变分推理深度状态空间模型
Med Image Comput Comput Assist Interv. 2023 Oct;14222:346-356. doi: 10.1007/978-3-031-43898-1_34. Epub 2023 Oct 1.
2
Uncertain-DeepSSM: From Images to Probabilistic Shape Models.不确定深度状态空间模型:从图像到概率形状模型。
Shape Med Imaging (2020). 2020 Oct;12474:57-72. doi: 10.1007/978-3-030-61056-2_5. Epub 2020 Oct 3.
3
From Images to Probabilistic Anatomical Shapes: A Deep Variational Bottleneck Approach.从图像到概率解剖形状:一种深度变分瓶颈方法。
Med Image Comput Comput Assist Interv. 2022 Sep;13432:474-484. doi: 10.1007/978-3-031-16434-7_46. Epub 2022 Sep 16.
5
Progressive DeepSSM: Training Methodology for Image-To-Shape Deep Models.渐进式深度SSM:图像到形状深度模型的训练方法
Shape Med Imaging (2023). 2023 Oct;14350:157-172. doi: 10.1007/978-3-031-46914-5_13. Epub 2023 Oct 31.
10
Bayesian Uncertainty Estimation of Learned Variational MRI Reconstruction.贝叶斯不确定性估计在学习变分 MRI 重建中的应用。
IEEE Trans Med Imaging. 2022 Feb;41(2):279-291. doi: 10.1109/TMI.2021.3112040. Epub 2022 Feb 2.

引用本文的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验