Suppr超能文献

基于数据驱动的皮质网络模型通过深部脑刺激控制阿尔茨海默病。

Controlling Alzheimer's disease by deep brain stimulation based on a data-driven cortical network model.

作者信息

Yan SiLu, Yang XiaoLi, Duan ZhiXi

机构信息

School of Mathematics and Statistics, Shaanxi Normal University, Xi'an, 710062 People's Republic of China.

出版信息

Cogn Neurodyn. 2024 Oct;18(5):3157-3180. doi: 10.1007/s11571-024-10148-3. Epub 2024 Jul 8.

Abstract

This work aims to explore the control effect of DBS on Alzheimer's disease (AD) from a neurocomputational perspective. Firstly, a data-driven cortical network model is constructed using the Diffusion Tensor Imaging data. Then, a typical electrophysiological feature of EEG slowing in AD is reproduced by reducing the synaptic connectivity parameters. The corresponding changes in kinetic behavior mainly include an oscillation decrease in the amplitude and frequency of the pyramidal neuron population. Subsequently, DBS current with specific parameters is introduced into three potential targets of the hippocampus, the nucleus accumbens and the olfactory tubercle, respectively. The results indicate that applying DBS to simulated mild AD patients induces an increase in relative alpha power, a decrease in relative theta power, and a significant rightward shift of the dominant frequency. This is consistent with the EEG reversal in pharmacological treatments for AD. Further, the optimal stimulation strategy of DBS is investigated through spectral and statistical analyses. Specifically, the pathological symptoms of AD could be alleviated by adjusting the critical parameters of DBS, and the control effect of DBS on various targets is that the hippocampus is superior to the olfactory tubercle and nucleus accumbens. Finally, using correlation analysis between the power increments and the nodal degrees, it is concluded that the control effect of DBS is related to the importance of the nodes in the brain network. This study provides a theoretical guidance for determining DBS targets and parameters, which may have a substantial impact on the development of DBS treatment for AD.

摘要

这项工作旨在从神经计算的角度探索深部脑刺激(DBS)对阿尔茨海默病(AD)的控制效果。首先,利用扩散张量成像数据构建一个数据驱动的皮质网络模型。然后,通过降低突触连接参数来重现AD中脑电图减慢这一典型的电生理特征。动力学行为的相应变化主要包括锥体神经元群体的振幅和频率振荡下降。随后,将具有特定参数的DBS电流分别引入海马体、伏隔核和嗅结节这三个潜在靶点。结果表明,对模拟的轻度AD患者应用DBS会导致相对阿尔法功率增加、相对西塔功率降低以及优势频率显著右移。这与AD药物治疗中的脑电图逆转情况一致。此外,通过频谱和统计分析研究了DBS的最佳刺激策略。具体而言,通过调整DBS的关键参数可以缓解AD的病理症状,并且DBS对各个靶点的控制效果是海马体优于嗅结节和伏隔核。最后,利用功率增量与节点度之间的相关性分析得出结论,DBS的控制效果与脑网络中节点的重要性有关。本研究为确定DBS靶点和参数提供了理论指导,这可能对AD的DBS治疗发展产生重大影响。

相似文献

1
Controlling Alzheimer's disease by deep brain stimulation based on a data-driven cortical network model.
Cogn Neurodyn. 2024 Oct;18(5):3157-3180. doi: 10.1007/s11571-024-10148-3. Epub 2024 Jul 8.
2
Deep brain and cortical stimulation for epilepsy.
Cochrane Database Syst Rev. 2017 Jul 18;7(7):CD008497. doi: 10.1002/14651858.CD008497.pub3.
4
Nimodipine for primary degenerative, mixed and vascular dementia.
Cochrane Database Syst Rev. 2001(1):CD000147. doi: 10.1002/14651858.CD000147.
5
The clinical and cost-effectiveness of donepezil, rivastigmine, galantamine and memantine for Alzheimer's disease.
Health Technol Assess. 2006 Jan;10(1):iii-iv, ix-xi, 1-160. doi: 10.3310/hta10010.
6
Speech changes in old age: Methodological considerations for speech-based discrimination of healthy ageing and Alzheimer's disease.
Int J Lang Commun Disord. 2024 Jan-Feb;59(1):13-37. doi: 10.1111/1460-6984.12888. Epub 2023 May 4.
7
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.
Cochrane Database Syst Rev. 2021 Apr 19;4(4):CD011535. doi: 10.1002/14651858.CD011535.pub4.
9
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.
Cochrane Database Syst Rev. 2020 Jan 9;1(1):CD011535. doi: 10.1002/14651858.CD011535.pub3.
10
Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19.
Cochrane Database Syst Rev. 2022 May 20;5(5):CD013665. doi: 10.1002/14651858.CD013665.pub3.

本文引用的文献

1
Deep brain stimulation for Alzheimer's disease - current status and next steps.
Expert Rev Med Devices. 2024 Apr;21(4):285-292. doi: 10.1080/17434440.2024.2337298. Epub 2024 Apr 4.
3
Deep brain stimulation for the treatment of Alzheimer's disease: A systematic review and meta-analysis.
Front Neurosci. 2023 Apr 13;17:1154180. doi: 10.3389/fnins.2023.1154180. eCollection 2023.
5
Synaptic degeneration in Alzheimer disease.
Nat Rev Neurol. 2023 Jan;19(1):19-38. doi: 10.1038/s41582-022-00749-z. Epub 2022 Dec 13.
6
Synapse pathology in Alzheimer's disease.
Semin Cell Dev Biol. 2023 Apr;139:13-23. doi: 10.1016/j.semcdb.2022.05.028. Epub 2022 Jun 9.
8
Controlling Alzheimer's Disease Through the Deep Brain Stimulation to Thalamic Relay Cells.
Front Comput Neurosci. 2021 Nov 8;15:636770. doi: 10.3389/fncom.2021.636770. eCollection 2021.
9
Measures of resting state EEG rhythms for clinical trials in Alzheimer's disease: Recommendations of an expert panel.
Alzheimers Dement. 2021 Sep;17(9):1528-1553. doi: 10.1002/alz.12311. Epub 2021 Apr 15.
10
Deep Brain Stimulation for Alzheimer's Disease: Stimulation Parameters and Potential Mechanisms of Action.
Front Aging Neurosci. 2021 Mar 11;13:619543. doi: 10.3389/fnagi.2021.619543. eCollection 2021.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验