Pan Jinbo, Zhang Yan-Fang, Zhang Yu-Yang, Du Shixuan
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.
University of Chinese Academy of Sciences, Beijing 100049, China.
Nano Lett. 2024 Nov 27;24(47):14909-14923. doi: 10.1021/acs.nanolett.4c04251. Epub 2024 Nov 18.
Two-dimensional (2D) magnetic materials have attracted great attention due to their promise for applications in future high-speed, low-energy quantum computing and memory devices. By integrating 2D magnetic materials with other magnetic or nonmagnetic materials to form heterostructures, the synergistic effects of interlayer orbital hybridization, spin-orbit coupling, and symmetry breaking can surpass the performance of single-layer materials and lead to novel physical phenomena. This review provides a comprehensive theoretical analysis of engineering 2D magnetic heterostructures, emphasizing the fundamental physics of interlayer interactions and the resulting enhancements and novel properties. It reviews the mechanisms and progress in tuning the magnetic ordering, enhancing the Curie temperature () and modulating properties such as topological magnetic structures, spin polarization, electronic band topology, valley polarization, and magnetoelectric coupling through the construction of 2D magnetic heterostructures. Additionally, this review discusses the current challenges faced by 2D magnetic heterostructures, aiming to guide the future design of higher-performance magnetic heterostructures.
二维(2D)磁性材料因其在未来高速、低能量量子计算和存储设备中的应用前景而备受关注。通过将二维磁性材料与其他磁性或非磁性材料集成以形成异质结构,层间轨道杂化、自旋轨道耦合和对称性破缺的协同效应可以超越单层材料的性能,并导致新的物理现象。本综述对二维磁性异质结构工程进行了全面的理论分析,强调了层间相互作用的基本物理原理以及由此产生的增强和新特性。它回顾了通过构建二维磁性异质结构来调节磁有序、提高居里温度( )以及调制诸如拓扑磁结构、自旋极化、电子能带拓扑、谷极化和磁电耦合等特性的机制和进展。此外,本综述讨论了二维磁性异质结构目前面临的挑战,旨在指导未来高性能磁性异质结构的设计。