Li Wenhao, Shen Jichuang, Ma Yaqing, Xu Xiang, Chen Han, Yu Lida, Ji Chen, He Menglin, Ma Kezhao, Duo Yiwei, Wang Li, Wei Tongbo, Shi Liping, Wu Muhong, Liu Kaihui, Zhu Huaze, Kong Wei
Zhejiang University, Hangzhou, 310027, China.
School of Engineering, Westlake University, Hangzhou, 310030, China.
Adv Sci (Weinh). 2025 Jan;12(2):e2411656. doi: 10.1002/advs.202411656. Epub 2024 Nov 18.
2D stacking presents a promising avenue for creating periodic superstructures that unveil novel physical phenomena. While extensive research has focused on lateral 2D material superstructures formed through composition modulation and twisted moiré structures, the exploration of vertical periodicity in 2D material superstructures remains limited. Although weak van der Waals interfaces enable layer-by-layer vertical stacking, traditional methods struggle to control in-plane crystal orientation over large areas, and the vertical dimension is constrained by unscalable, low-throughput processes, preventing the achievement of global order structures. In this study, a supercell multiplying approach is introduced that enables high-throughput construction of 3D superstructures on a macroscopic scale, utilizing artificially stacked single-crystalline 2D multilayers as foundational repeating units. By employing wafer-scale single-crystalline 2D materials and referencing the crystal orientation of substrates, the method ensures precise alignment of crystal orientation within and across each supercell, thereby achieving controllable periodicity along all three axes. A centimeter-scale 3R-MoS₂ crystal is successfully constructed, comprising over 200 monolayers of single-crystalline MoS₂, through a bottom-up stacking process. Additionally, the approach accommodates the integration of amorphous oxide, enabling the assembly of 3D non-linear optical crystals with quasi-phase matching. This method paves the way for the bottom-up construction of macroscopic artificial 3D crystals with atomic plane precision, enabling tailored optical, electrical, and thermal properties and advancing the development of novel artificial materials and high-performance applications.
二维堆叠为创造揭示新物理现象的周期性超结构提供了一条有前景的途径。虽然广泛的研究集中在通过成分调制和扭曲莫尔结构形成的横向二维材料超结构上,但二维材料超结构中垂直周期性的探索仍然有限。尽管弱范德华界面允许逐层垂直堆叠,但传统方法难以在大面积上控制面内晶体取向,并且垂直维度受到不可扩展、低通量过程的限制,阻碍了全局有序结构的实现。在本研究中,引入了一种超晶胞倍增方法,该方法能够在宏观尺度上高通量构建三维超结构,利用人工堆叠的单晶二维多层膜作为基本重复单元。通过采用晶圆级单晶二维材料并参考衬底的晶体取向,该方法确保了每个超晶胞内部和之间晶体取向的精确对齐,从而在所有三个轴向上实现可控的周期性。通过自下而上的堆叠过程,成功构建了厘米级的3R-MoS₂晶体,其包含超过200个单层单晶MoS₂。此外,该方法还能实现非晶氧化物的集成,从而能够组装具有准相位匹配的三维非线性光学晶体。这种方法为以原子平面精度自下而上构建宏观人工三维晶体铺平了道路,能够实现定制的光学、电学和热学性质,并推动新型人工材料和高性能应用的发展。