Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha, 410082, China.
Hunan Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China.
Nat Commun. 2023 Apr 24;14(1):2340. doi: 10.1038/s41467-023-37887-x.
The practical application of two-dimensional (2D) semiconductors for high-performance electronics requires the integration with large-scale and high-quality dielectrics-which however have been challenging to deposit to date, owing to their dangling-bonds-free surface. Here, we report a dry dielectric integration strategy that enables the transfer of wafer-scale and high-κ dielectrics on top of 2D semiconductors. By utilizing an ultra-thin buffer layer, sub-3 nm thin AlO or HfO dielectrics could be pre-deposited and then mechanically dry-transferred on top of MoS monolayers. The transferred ultra-thin dielectric film could retain wafer-scale flatness and uniformity without any cracks, demonstrating a capacitance up to 2.8 μF/cm, equivalent oxide thickness down to 1.2 nm, and leakage currents of ~10A/cm. The fabricated top-gate MoS transistors showed intrinsic properties without doping effects, exhibiting on-off ratios of ~10, subthreshold swing down to 68 mV/dec, and lowest interface states of 7.6×10cm eV. We also show that the scalable top-gate arrays can be used to construct functional logic gates. Our study provides a feasible route towards the vdW integration of high-κ dielectric films using an industry-compatible ALD process with well-controlled thickness, uniformity and scalability.
二维(2D)半导体在高性能电子学中的实际应用需要与大规模和高质量电介质集成-迄今为止,由于其悬空键免费的表面,这一直具有挑战性。在这里,我们报告了一种干式介电集成策略,该策略可实现 2D 半导体上的晶圆级和高κ电介质的转移。通过利用超薄缓冲层,可以预先沉积亚 3nm 厚的 AlO 或 HfO 电介质,然后在 MoS 单层上进行机械干式转移。转移的超薄介电薄膜可以保持晶圆级的平整度和均匀性,而不会出现任何裂缝,其电容高达 2.8 μF/cm,等效氧化物厚度低至 1.2nm,漏电流约为 10A/cm。所制造的顶栅 MoS 晶体管具有无掺杂效应的本征特性,表现出约 10 的开关比,亚阈值摆幅低至 68mV/dec,以及最低的界面态为 7.6×10cm eV。我们还表明,可扩展的顶栅阵列可用于构建功能逻辑门。我们的研究为使用具有良好厚度、均匀性和可扩展性的行业兼容 ALD 工艺实现 vdW 高κ电介质膜的集成提供了一种可行的途径。