Suppr超能文献

利用大语言模型和 MRI 分割对腰椎疾病进行分类。

Classification of lumbar spine disorders using large language models and MRI segmentation.

机构信息

Department of Spinal Surgery, The Second Hospital of Jilin University, No. 218, Ziqiang Street, Nanguan District, Chuangchun, 130041, China.

出版信息

BMC Med Inform Decis Mak. 2024 Nov 18;24(1):343. doi: 10.1186/s12911-024-02740-8.

Abstract

BACKGROUND

MRI is critical for diagnosing lumbar spine disorders but its complexity challenges diagnostic accuracy. This study proposes a BERT-based large language model (LLM) to enhance precision in classifying lumbar spine disorders through the integration of MRI data, textual reports, and numerical measurements.

METHODS

The segmentation quality of MRI data is evaluated using dice coefficients (cut-off: 0.92) and intersection over union (IoU) metrics (cut-off: 0.88) to ensure precise anatomical feature extraction. The CNN extracts key lumbar spine features, such as lumbar lordotic angle (LLA) and disc heights, which are tokenized as direct scalar values representing positional relationships. A data source of 28,065 patients with various disorders, including degenerative disc disease, spinal stenosis, and spondylolisthesis, is used to establish diagnostic standards. These standards are refined through post-CNN processing of MRI texture features. The BERT-based spinal LLM model integrates these CNN-extracted MRI features and numerical values through early fusion layers.

RESULTS

Segmentation analysis illustrate various lumbar spine disorders and their anatomical changes. The model achieved high performance, with all key metrics nearing 0.9, demonstrating its effectiveness in classifying conditions like spondylolisthesis, herniated disc, and spinal stenosis. External validation further confirmed the model's generalizability across different populations. External validation on 514 expert-validated MRI cases further confirms the model's clinical relevance and generalizability. The BERT-based model classifies 61 combinations of lumbar spine disorders.

CONCLUSIONS

The BERT-based spinal LLM significantly improves the precision of lumbar spine disorder classification, supporting accurate diagnosis and treatment planning.

摘要

背景

MRI 对诊断腰椎疾病至关重要,但因其复杂性,对诊断准确率提出了挑战。本研究提出了一种基于 BERT 的大型语言模型(LLM),通过整合 MRI 数据、文本报告和数值测量,提高腰椎疾病分类的精度。

方法

使用 Dice 系数(截止值:0.92)和交并比(IoU)度量(截止值:0.88)评估 MRI 数据的分割质量,以确保精确的解剖特征提取。CNN 提取关键的腰椎特征,如腰椎前凸角(LLA)和椎间盘高度,这些特征被标记为直接标量值,代表位置关系。使用包括退行性椎间盘疾病、椎管狭窄和脊椎滑脱在内的 28065 例不同疾病患者的数据来源,建立诊断标准。通过对 MRI 纹理特征的后 CNN 处理进一步细化这些标准。基于 BERT 的脊柱 LLM 模型通过早期融合层整合这些 CNN 提取的 MRI 特征和数值。

结果

分割分析说明了各种腰椎疾病及其解剖变化。该模型表现出了很高的性能,所有关键指标都接近 0.9,表明其在分类脊椎滑脱、椎间盘突出和椎管狭窄等疾病方面的有效性。外部验证进一步证实了模型在不同人群中的泛化能力。对 514 例经专家验证的 MRI 病例进行的外部验证进一步证实了模型的临床相关性和泛化能力。基于 BERT 的模型可对 61 种腰椎疾病组合进行分类。

结论

基于 BERT 的脊柱 LLM 显著提高了腰椎疾病分类的精度,支持准确的诊断和治疗计划。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/71ea/11571895/bd13c696dc13/12911_2024_2740_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验