Suppr超能文献

应用多元线性回归模型和带区室模型的长短期记忆网络,基于气候变量预测马来西亚雪兰莪州的登革热病例。

Application of multiple linear regression model and long short-term memory with compartmental model to forecast dengue cases in Selangor, Malaysia based on climate variables.

作者信息

Lu Xinyi, Teh Su Yean, Tay Chai Jian, Abu Kassim Nur Faeza, Fam Pei Shan, Soewono Edy

机构信息

School of Mathematical Sciences, Universiti Sains Malaysia, 11800, USM, Pulau Pinang, Malaysia.

Centre for Mathematical Sciences, Universiti Malaysia Pahang Al-Sultan Abdullah, 26300, Gambang, Pahang, Malaysia.

出版信息

Infect Dis Model. 2024 Oct 28;10(1):240-256. doi: 10.1016/j.idm.2024.10.007. eCollection 2025 Mar.

Abstract

Despite the implementation of various initiatives, dengue remains a significant public health concern in Malaysia. Given that dengue has no specific treatment, dengue prediction remains a useful early warning mechanism for timely and effective deployment of public health preventative measures. This study aims to develop a comprehensive approach for forecasting dengue cases in Selangor, Malaysia by incorporating climate variables. An ensemble of Multiple Linear Regression (MLR) model, Long Short-Term Memory (LSTM), and Susceptible-Infected mosquito vectors, Susceptible-Infected-Recovered human hosts (SI-SIR) model were used to establish a relation between climate variables (temperature, humidity, precipitation) and mosquito biting rate. Dengue incidence subject to climate variability can then be projected by SI-SIR model using the forecasted mosquito biting rate. The proposed approach outperformed three alternative approaches and expanded the temporal horizon of dengue prediction for Selangor with the ability to forecast approximately 60 weeks ahead with a Mean Absolute Percentage Error (MAPE) of 13.97 for the chosen prediction window before the implementation of the Movement Control Order (MCO) in Malaysia. Extended validation across subsequent periods also indicates relatively satisfactory forecasting performance (with MAPE ranging from 13.12 to 17.09). This research contributed to the field by introducing a novel framework for the prediction of dengue cases over an extended temporal range.

摘要

尽管实施了各种举措,但登革热仍是马来西亚一个重大的公共卫生问题。鉴于登革热没有特定的治疗方法,登革热预测仍然是一种有用的早期预警机制,可用于及时有效地部署公共卫生预防措施。本研究旨在通过纳入气候变量,开发一种全面的方法来预测马来西亚雪兰莪州的登革热病例。使用多元线性回归(MLR)模型、长短期记忆(LSTM)模型以及易感-感染蚊媒、易感-感染-康复人类宿主(SI-SIR)模型的集成,来建立气候变量(温度、湿度、降水)与蚊虫叮咬率之间的关系。然后,SI-SIR模型可以使用预测的蚊虫叮咬率来预测受气候变化影响的登革热发病率。所提出的方法优于三种替代方法,并扩展了雪兰莪州登革热预测的时间范围,在马来西亚实施行动管制令(MCO)之前,对于选定的预测窗口,能够提前约60周进行预测,平均绝对百分比误差(MAPE)为13.97。后续时期的扩展验证也表明预测性能相对令人满意(MAPE范围为13.12至17.09)。本研究通过引入一个用于在扩展时间范围内预测登革热病例的新颖框架,为该领域做出了贡献。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/50f9/11570709/58399047e623/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验