Suppr超能文献

基于双向长短期记忆网络-双向门控循环单元模型的感染性肠胃炎预测与预警分析

Predictive and early warning analysis of infectious gastroenteritis based on the BiLSTM-BiGRU model.

作者信息

Qiao Yan, Ma Miao, Jiao Yibo, Zhai Yunkai

机构信息

School of Management, Zhengzhou University, Zhengzhou, 450001, China.

National Engineering Laboratory for Internet Medical Systems and Applications, Zhengzhou, 450052, China.

出版信息

Infect Dis Model. 2025 Aug 5;10(4):1433-1445. doi: 10.1016/j.idm.2025.07.016. eCollection 2025 Dec.

Abstract

Appropriate use of scientific early-warning infectious disease surveillance methods plays a vital role in disease control and prevention. Recently infectious gastroenteritis has become an important public health problem. In consideration of meteorological factors strongly linked with the incidence of infectious gastroenteritis, we obtained data on the number of infectious gastroenteritis cases and meteorological data from January 2008 to June 2023, a total of 808 weeks. We constructed a BiLSTM-BiGRU model to fit and predict the incidence of infectious gastroenteritis in Tokyo, Japan, to improve the prediction accuracy and early warning efficiency of infectious gastroenteritis, provide references for relevant departments to formulate infectious disease prevention and control measures in advance, and make emergency preparations. For this purpose, we also used three optimization algorithms for parameter tuning and constructed a moving percentile control chart warning model. The results show that the BiLSTM-BiGRU model performed better than mainstream deep learning methods. Among the three selected optimization algorithms, the Grey Wolf Optimization algorithm performed the best, with an R of 0.85, and led to reductions of 11.90 % in RMSE, 12.44 % in MAE, and 16.18 % in MAPE, respectively. We found that the GWO-BiLSTM-BiGRU model can fit and predict the number of infectious gastroenteritis cases in Tokyo accurately. Relevant departments should be alert to the high incidence of infectious gastroenteritis during weeks 3-5 each year based on the prediction and warning results.

摘要

科学合理地运用传染病早期预警监测方法在疾病防控中起着至关重要的作用。近年来,感染性肠胃炎已成为一个重要的公共卫生问题。鉴于气象因素与感染性肠胃炎发病率密切相关,我们获取了2008年1月至2023年6月共808周的感染性肠胃炎病例数数据和气象数据。我们构建了一个双向长短期记忆网络-双向门控循环单元(BiLSTM-BiGRU)模型,以拟合和预测日本东京感染性肠胃炎的发病率,提高感染性肠胃炎的预测准确性和预警效率,为相关部门提前制定传染病防控措施提供参考,并做好应急准备。为此,我们还使用了三种优化算法进行参数调整,并构建了移动百分位数控制图预警模型。结果表明,BiLSTM-BiGRU模型的表现优于主流深度学习方法。在所选的三种优化算法中,灰狼优化算法表现最佳,相关系数R为0.85,均方根误差(RMSE)降低了11.90%,平均绝对误差(MAE)降低了12.44%,平均绝对百分比误差(MAPE)降低了16.18%。我们发现,灰狼优化算法-双向长短期记忆网络-双向门控循环单元(GWO-BiLSTM-BiGRU)模型能够准确地拟合和预测东京感染性肠胃炎病例数。基于预测和预警结果,相关部门应警惕每年第3至5周感染性肠胃炎的高发情况。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/34db/12351331/0954368ba560/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验