Suppr超能文献

用于粒子插入和元素替换的机器学习替代模型。

Machine-learning surrogate models for particle insertions and element substitutions.

作者信息

Jinnouchi Ryosuke

机构信息

Toyota Central R&D Labs., Inc., 41-1 Yokomichi, Nagakute, Aichi 480-1192, Japan.

出版信息

J Chem Phys. 2024 Nov 21;161(19). doi: 10.1063/5.0240275.

Abstract

Two machine-learning-aided thermodynamic integration schemes to compute the chemical potentials of atoms and molecules have been developed and compared. One is the particle insertion method, and the other combines particle insertion with element substitution. In the former method, the species is gradually inserted into the liquid and its chemical potential is computed. In the latter method, after the particle insertion, the inserted species is substituted with another species, and the chemical potential of this new species is computed. In both methods, the thermodynamic integrations are conducted using machine-learned potentials trained on first-principles datasets. The errors of the machine-learned surrogate models are further corrected by performing thermodynamic integrations from the machine-learned potentials to the first-principles potentials, accurately providing the first-principles chemical potentials. These two methods are applied to compute the real potentials of proton, alkali metal cations, and halide anions in water. The applications indicate that these two entirely different thermodynamic pathways yield identical real potentials within statistical error bars, demonstrating that both methods provide reproducible real potentials. The computed real potentials and solvation structures are also in good agreement with past experiments and simulations. These results indicate that machine-learning surrogate models enabling particle insertion and element substitution provide a precise method for determining the chemical potentials of atoms and molecules.

摘要

已开发并比较了两种用于计算原子和分子化学势的机器学习辅助热力学积分方案。一种是粒子插入法,另一种是将粒子插入与元素取代相结合的方法。在前一种方法中,将物种逐渐插入液体中并计算其化学势。在后一种方法中,在粒子插入后,将插入的物种用另一种物种取代,并计算这个新物种的化学势。在这两种方法中,热力学积分都是使用基于第一性原理数据集训练的机器学习势来进行的。通过从机器学习势到第一性原理势进行热力学积分,进一步校正机器学习替代模型的误差,从而精确地提供第一性原理化学势。将这两种方法应用于计算质子、碱金属阳离子和卤化物阴离子在水中的实际势。应用表明,这两条完全不同的热力学途径在统计误差范围内产生相同的实际势,表明这两种方法都能提供可重复的实际势。计算得到的实际势和溶剂化结构也与过去的实验和模拟结果吻合良好。这些结果表明,能够进行粒子插入和元素取代的机器学习替代模型为确定原子和分子的化学势提供了一种精确的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验