Suppr超能文献

真菌多糖单加氧酶中第二球组氨酸的催化功能

Second-Sphere Histidine Catalytic Function in a Fungal Polysaccharide Monooxygenase.

作者信息

Batka Allison E, Thomas William C, Tudorica Dan A, Sayler Richard I, Marletta Michael A

机构信息

Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States.

California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, California 94720, United States.

出版信息

Biochemistry. 2024 Dec 3;63(23):3136-3146. doi: 10.1021/acs.biochem.4c00527. Epub 2024 Nov 20.

Abstract

Fungal polysaccharide monooxygenases (PMOs) oxidatively degrade cellulose and other carbohydrate polymers via a mononuclear copper active site using either O or HO as a cosubstrate. Cellulose-active fungal PMOs in the auxiliary activity 9 (AA9) family have a conserved second-sphere hydrogen-bonding network consisting of histidine, glutamine, and tyrosine residues. The second-sphere histidine has been hypothesized to play a role in proton transfer in the O-dependent PMO reaction. Here the role of the second-sphere histidine (H157) in an AA9 PMO, PMO9E, was investigated. This PMO is active on soluble cello-oligosaccharides such as cellohexaose (Glc6), thus enabling kinetic analysis with the point variants H157A and H157Q. The variants appeared to fold similarly to the wild-type (WT) enzyme and yet exhibited weaker affinity toward Glc6 than WT (WT = 20 ± 3 μM). The variants had comparable oxidase (O reduction to HO) activity to WT at all pH values tested. Using O as a cosubstrate, the variants were less active for Glc6 hydroxylation than WT, with H157A being the least active. Similarly, H157Q was competent for Glc6 hydroxylation with HO, but H157A was less active. Comparison of the crystal structures of H157Q and WT PMO9E reveals that a terminal heteroatom of Q157 overlays with N of H157. Altogether, the data suggest that H157 is not important for proton transfer, but support a role for H157 as a hydrogen-bond donor to diatomic-oxygen intermediates, thus facilitating catalysis with either O or HO.

摘要

真菌多糖单加氧酶(PMOs)通过单核铜活性位点,以O₂或H₂O₂作为共底物,氧化降解纤维素和其他碳水化合物聚合物。辅助活性9(AA9)家族中具有纤维素活性的真菌PMOs拥有一个由组氨酸、谷氨酰胺和酪氨酸残基组成的保守的第二配位层氢键网络。据推测,第二配位层的组氨酸在依赖O₂的PMO反应中的质子转移过程中发挥作用。在此,研究了第二配位层组氨酸(H157)在AA9 PMO即PMO9E中的作用。这种PMO对诸如纤维六糖(Glc₆)等可溶性纤维寡糖具有活性,因此能够对H157A和H157Q点突变体进行动力学分析。这些突变体的折叠方式似乎与野生型(WT)酶相似,但对Glc₆的亲和力比WT弱(WT = 20 ± 3 μM)。在所有测试的pH值下,这些突变体与WT具有相当的氧化酶(O₂还原为H₂O₂)活性。以O₂作为共底物时,这些突变体对Glc₆羟基化的活性低于WT,其中H157A活性最低。同样,H157Q能够利用H₂O₂进行Glc₆羟基化,但H157A的活性较低。H157Q和WT PMO9E晶体结构的比较表明,Q157的末端杂原子与H157的N原子重叠。总体而言,数据表明H157对质子转移并不重要,但支持H157作为双原子氧中间体的氢键供体的作用,从而促进使用O₂或H₂O₂的催化反应。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验