Suppr超能文献

二级配位层在真菌多糖单加氧酶中的作用

The Role of the Secondary Coordination Sphere in a Fungal Polysaccharide Monooxygenase.

作者信息

Span Elise A, Suess Daniel L M, Deller Marc C, Britt R David, Marletta Michael A

机构信息

Biophysics Graduate Group, University of California, Berkeley , Berkeley, California 94720, United States.

Department of Chemistry, University of California, Davis , Davis, California 95616, United States.

出版信息

ACS Chem Biol. 2017 Apr 21;12(4):1095-1103. doi: 10.1021/acschembio.7b00016. Epub 2017 Mar 3.

Abstract

Polysaccharide monooxygenases (PMOs) are secreted metalloenzymes that catalyze the oxidative degradation of polysaccharides in a copper-, oxygen-, and reductant-dependent manner. Cellulose-active fungal PMOs degrade cellulosic substrates to be utilized as a carbon source for fungal growth. To gain insight into the PMO mechanism, the role of conserved residues in the copper coordination sphere was investigated. Here, we report active-site hydrogen-bonding motifs in the secondary copper coordination sphere of MtPMO3*, a C1-oxidizing PMO from the ascomycete fungus Myceliophthora thermophila. A series of point substitutions that disrupt this conserved network are used to interrogate its function. Activity assays, in conjunction with EPR spectroscopy, demonstrate that residues H161 and Q167 are involved in stabilizing bound oxygen, and H161 appears to play a role in proton transfer. Additionally, Q167 increases the ligand donor strength of Y169 to the copper via a hydrogen-bonding interaction. Altogether, H161 and Q167 are important for oxygen activation, and the results are suggestive of a copper-oxyl active intermediate.

摘要

多糖单加氧酶(PMOs)是分泌型金属酶,以铜、氧和还原剂依赖的方式催化多糖的氧化降解。具有纤维素活性的真菌PMOs降解纤维素底物,以供真菌生长用作碳源。为深入了解PMO的作用机制,研究了铜配位球中保守残基的作用。在此,我们报告了嗜热毁丝霉(Myceliophthora thermophila)的一种C1氧化型PMO——MtPMO3*的二级铜配位球中的活性位点氢键基序。一系列破坏这个保守网络的点突变用于探究其功能。活性测定结合电子顺磁共振光谱表明,残基H161和Q167参与稳定结合的氧,且H161似乎在质子转移中起作用。此外,Q167通过氢键相互作用增加了Y169对铜的配体供体强度。总之,H161和Q167对氧的活化很重要,结果提示存在铜氧基活性中间体。

相似文献

1
The Role of the Secondary Coordination Sphere in a Fungal Polysaccharide Monooxygenase.
ACS Chem Biol. 2017 Apr 21;12(4):1095-1103. doi: 10.1021/acschembio.7b00016. Epub 2017 Mar 3.
2
Fine Tuning of the Copper Active Site in Polysaccharide Monooxygenases.
J Phys Chem B. 2020 Mar 12;124(10):1859-1865. doi: 10.1021/acs.jpcb.9b08114. Epub 2020 Feb 26.
3
Oxidative cleavage of cellulose by fungal copper-dependent polysaccharide monooxygenases.
J Am Chem Soc. 2012 Jan 18;134(2):890-2. doi: 10.1021/ja210657t. Epub 2011 Dec 28.
4
A family of starch-active polysaccharide monooxygenases.
Proc Natl Acad Sci U S A. 2014 Sep 23;111(38):13822-7. doi: 10.1073/pnas.1408090111. Epub 2014 Sep 8.
5
Oxygen Activation at the Active Site of a Fungal Lytic Polysaccharide Monooxygenase.
Angew Chem Int Ed Engl. 2017 Jan 16;56(3):767-770. doi: 10.1002/anie.201610502. Epub 2016 Dec 22.
6
The framework of polysaccharide monooxygenase structure and chemistry.
Curr Opin Struct Biol. 2015 Dec;35:93-9. doi: 10.1016/j.sbi.2015.10.002. Epub 2015 Nov 23.
7
Structural basis for substrate targeting and catalysis by fungal polysaccharide monooxygenases.
Structure. 2012 Jun 6;20(6):1051-61. doi: 10.1016/j.str.2012.04.002. Epub 2012 May 10.
9
Substrate selectivity in starch polysaccharide monooxygenases.
J Biol Chem. 2019 Aug 9;294(32):12157-12166. doi: 10.1074/jbc.RA119.009509. Epub 2019 Jun 24.
10
Reactivity of O versus HO with polysaccharide monooxygenases.
Proc Natl Acad Sci U S A. 2018 May 8;115(19):4915-4920. doi: 10.1073/pnas.1801153115. Epub 2018 Apr 23.

引用本文的文献

1
Functional variation among LPMOs revealed by the inhibitory effects of cyanide and buffer ions.
FEBS Lett. 2025 May;599(9):1317-1336. doi: 10.1002/1873-3468.15105. Epub 2025 Feb 6.
3
Electron transfer in polysaccharide monooxygenase catalysis.
Proc Natl Acad Sci U S A. 2025 Jan 7;122(1):e2411229121. doi: 10.1073/pnas.2411229121. Epub 2024 Dec 30.
4
Selective oxidation of active site aromatic residues in engineered Cu proteins.
Chem Sci. 2024 Nov 18;16(1):98-103. doi: 10.1039/d4sc06667g. eCollection 2024 Dec 18.
7
The rotamer of the second-sphere histidine in AA9 lytic polysaccharide monooxygenase is pH dependent.
Biophys J. 2024 May 7;123(9):1139-1151. doi: 10.1016/j.bpj.2024.04.002. Epub 2024 Apr 2.
8
Assessing the role of redox partners in TthLPMO9G and its mutants: focus on HO production and interaction with cellulose.
Biotechnol Biofuels Bioprod. 2024 Feb 1;17(1):19. doi: 10.1186/s13068-024-02463-y.
9
Expanding the catalytic landscape of metalloenzymes with lytic polysaccharide monooxygenases.
Nat Rev Chem. 2024 Feb;8(2):106-119. doi: 10.1038/s41570-023-00565-z. Epub 2024 Jan 10.
10
Mapping the Initial Stages of a Protective Pathway that Enhances Catalytic Turnover by a Lytic Polysaccharide Monooxygenase.
J Am Chem Soc. 2023 Sep 20;145(37):20672-20682. doi: 10.1021/jacs.3c06607. Epub 2023 Sep 9.

本文引用的文献

1
Oxygen Activation at the Active Site of a Fungal Lytic Polysaccharide Monooxygenase.
Angew Chem Int Ed Engl. 2017 Jan 16;56(3):767-770. doi: 10.1002/anie.201610502. Epub 2016 Dec 22.
2
Processing of X-ray diffraction data collected in oscillation mode.
Methods Enzymol. 1997;276:307-26. doi: 10.1016/S0076-6879(97)76066-X.
3
The molecular basis of polysaccharide cleavage by lytic polysaccharide monooxygenases.
Nat Chem Biol. 2016 Apr;12(4):298-303. doi: 10.1038/nchembio.2029. Epub 2016 Feb 29.
4
The framework of polysaccharide monooxygenase structure and chemistry.
Curr Opin Struct Biol. 2015 Dec;35:93-9. doi: 10.1016/j.sbi.2015.10.002. Epub 2015 Nov 23.
5
Structural and Functional Characterization of a Lytic Polysaccharide Monooxygenase with Broad Substrate Specificity.
J Biol Chem. 2015 Sep 18;290(38):22955-69. doi: 10.1074/jbc.M115.660183. Epub 2015 Jul 15.
6
HMMER web server: 2015 update.
Nucleic Acids Res. 2015 Jul 1;43(W1):W30-8. doi: 10.1093/nar/gkv397. Epub 2015 May 5.
7
Cellulose degradation by polysaccharide monooxygenases.
Annu Rev Biochem. 2015;84:923-46. doi: 10.1146/annurev-biochem-060614-034439. Epub 2015 Mar 12.
8
Elaboration of copper-oxygen mediated C-H activation chemistry in consideration of future fuel and feedstock generation.
Curr Opin Chem Biol. 2015 Apr;25:184-93. doi: 10.1016/j.cbpa.2015.02.014. Epub 2015 Mar 8.
9
Spectroscopic and computational insight into the activation of O2 by the mononuclear Cu center in polysaccharide monooxygenases.
Proc Natl Acad Sci U S A. 2014 Jun 17;111(24):8797-802. doi: 10.1073/pnas.1408115111. Epub 2014 Jun 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验