California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720.
Department of Chemistry, University of California, Berkeley, CA 94720.
Proc Natl Acad Sci U S A. 2018 May 8;115(19):4915-4920. doi: 10.1073/pnas.1801153115. Epub 2018 Apr 23.
Enzymatic conversion of polysaccharides into lower-molecular-weight, soluble oligosaccharides is dependent on the action of hydrolytic and oxidative enzymes. Polysaccharide monooxygenases (PMOs) use an oxidative mechanism to break the glycosidic bond of polymeric carbohydrates, thereby disrupting the crystalline packing and creating new chain ends for hydrolases to depolymerize and degrade recalcitrant polysaccharides. PMOs contain a mononuclear Cu(II) center that is directly involved in C-H bond hydroxylation. Molecular oxygen was the accepted cosubstrate utilized by this family of enzymes until a recent report indicated reactivity was dependent on HO Reported here is a detailed analysis of PMO reactivity with HO and O, in conjunction with high-resolution MS measurements. The cosubstrate utilized by the enzyme is dependent on the assay conditions. PMOs will directly reduce O in the coupled hydroxylation of substrate (monooxygenase activity) and will also utilize HO (peroxygenase activity) produced from the uncoupled reduction of O Both cosubstrates require Cu reduction to Cu(I), but the reaction with HO leads to nonspecific oxidation of the polysaccharide that is consistent with the generation of a hydroxyl radical-based mechanism in Fenton-like chemistry, while the O reaction leads to regioselective substrate oxidation using an enzyme-bound Cu/O reactive intermediate. Moreover, HO does not influence the ability of secretome from to degrade Avicel, providing evidence that molecular oxygen is a physiologically relevant cosubstrate for PMOs.
多糖转化为低分子量、可溶性寡糖依赖于水解和氧化酶的作用。多糖单加氧酶(PMO)使用氧化机制来打断聚合物碳水化合物的糖苷键,从而破坏晶体堆积并为水解酶创造新的链端以解聚和降解难降解的多糖。PMO 含有一个单核铜 (II) 中心,该中心直接参与 C-H 键羟化。这种酶家族的公认共底物是分子氧,直到最近的一份报告表明反应性依赖于 HO。本文详细分析了 PMO 与 HO 和 O 的反应性,同时结合了高分辨率 MS 测量。酶利用的共底物取决于测定条件。PMO 将在底物的偶联羟化(单加氧酶活性)中直接还原 O,并且还将利用来自 O 未偶联还原产生的 HO(过氧化物酶活性)。两种共底物都需要 Cu 还原为 Cu(I),但与 HO 的反应导致多糖的非特异性氧化,这与 Fenton 样化学中的基于羟基自由基的机制的产生一致,而 O 反应导致使用酶结合的 Cu/O 反应中间体的选择性底物氧化。此外,HO 不会影响 分泌酶降解微晶纤维素的能力,这提供了证据表明分子氧是 PMO 的生理相关共底物。