Suppr超能文献

O 与 HO 与多糖单加氧酶的反应性。

Reactivity of O versus HO with polysaccharide monooxygenases.

机构信息

California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720.

Department of Chemistry, University of California, Berkeley, CA 94720.

出版信息

Proc Natl Acad Sci U S A. 2018 May 8;115(19):4915-4920. doi: 10.1073/pnas.1801153115. Epub 2018 Apr 23.

Abstract

Enzymatic conversion of polysaccharides into lower-molecular-weight, soluble oligosaccharides is dependent on the action of hydrolytic and oxidative enzymes. Polysaccharide monooxygenases (PMOs) use an oxidative mechanism to break the glycosidic bond of polymeric carbohydrates, thereby disrupting the crystalline packing and creating new chain ends for hydrolases to depolymerize and degrade recalcitrant polysaccharides. PMOs contain a mononuclear Cu(II) center that is directly involved in C-H bond hydroxylation. Molecular oxygen was the accepted cosubstrate utilized by this family of enzymes until a recent report indicated reactivity was dependent on HO Reported here is a detailed analysis of PMO reactivity with HO and O, in conjunction with high-resolution MS measurements. The cosubstrate utilized by the enzyme is dependent on the assay conditions. PMOs will directly reduce O in the coupled hydroxylation of substrate (monooxygenase activity) and will also utilize HO (peroxygenase activity) produced from the uncoupled reduction of O Both cosubstrates require Cu reduction to Cu(I), but the reaction with HO leads to nonspecific oxidation of the polysaccharide that is consistent with the generation of a hydroxyl radical-based mechanism in Fenton-like chemistry, while the O reaction leads to regioselective substrate oxidation using an enzyme-bound Cu/O reactive intermediate. Moreover, HO does not influence the ability of secretome from to degrade Avicel, providing evidence that molecular oxygen is a physiologically relevant cosubstrate for PMOs.

摘要

多糖转化为低分子量、可溶性寡糖依赖于水解和氧化酶的作用。多糖单加氧酶(PMO)使用氧化机制来打断聚合物碳水化合物的糖苷键,从而破坏晶体堆积并为水解酶创造新的链端以解聚和降解难降解的多糖。PMO 含有一个单核铜 (II) 中心,该中心直接参与 C-H 键羟化。这种酶家族的公认共底物是分子氧,直到最近的一份报告表明反应性依赖于 HO。本文详细分析了 PMO 与 HO 和 O 的反应性,同时结合了高分辨率 MS 测量。酶利用的共底物取决于测定条件。PMO 将在底物的偶联羟化(单加氧酶活性)中直接还原 O,并且还将利用来自 O 未偶联还原产生的 HO(过氧化物酶活性)。两种共底物都需要 Cu 还原为 Cu(I),但与 HO 的反应导致多糖的非特异性氧化,这与 Fenton 样化学中的基于羟基自由基的机制的产生一致,而 O 反应导致使用酶结合的 Cu/O 反应中间体的选择性底物氧化。此外,HO 不会影响 分泌酶降解微晶纤维素的能力,这提供了证据表明分子氧是 PMO 的生理相关共底物。

相似文献

1
Reactivity of O versus HO with polysaccharide monooxygenases.O 与 HO 与多糖单加氧酶的反应性。
Proc Natl Acad Sci U S A. 2018 May 8;115(19):4915-4920. doi: 10.1073/pnas.1801153115. Epub 2018 Apr 23.
4
A Random-Sequential Kinetic Mechanism for Polysaccharide Monooxygenases.多糖单加氧酶的随机序列动力学机制。
Biochemistry. 2018 Jun 5;57(22):3191-3199. doi: 10.1021/acs.biochem.8b00129. Epub 2018 Apr 27.
7
Substrate selectivity in starch polysaccharide monooxygenases.淀粉多糖单加氧酶的底物选择性。
J Biol Chem. 2019 Aug 9;294(32):12157-12166. doi: 10.1074/jbc.RA119.009509. Epub 2019 Jun 24.
10
Molecular mechanism of the chitinolytic peroxygenase reaction.几丁质分解过氧化物酶反应的分子机制。
Proc Natl Acad Sci U S A. 2020 Jan 21;117(3):1504-1513. doi: 10.1073/pnas.1904889117. Epub 2020 Jan 6.

引用本文的文献

4
Electron transfer in polysaccharide monooxygenase catalysis.多糖单加氧酶催化中的电子转移
Proc Natl Acad Sci U S A. 2025 Jan 7;122(1):e2411229121. doi: 10.1073/pnas.2411229121. Epub 2024 Dec 30.

本文引用的文献

1
Multiscale Modelling of Lytic Polysaccharide Monooxygenases.裂解多糖单加氧酶的多尺度建模
ACS Omega. 2017 Feb 13;2(2):536-545. doi: 10.1021/acsomega.6b00521. eCollection 2017 Feb 28.
3
Oxidative cleavage of polysaccharides by monocopper enzymes depends on HO.单铜酶通过 HO 实现多糖的氧化裂解。
Nat Chem Biol. 2017 Oct;13(10):1123-1128. doi: 10.1038/nchembio.2470. Epub 2017 Aug 28.
10
Copper(I)-Dioxygen Adducts and Copper Enzyme Mechanisms.铜(I)-双氧加合物与铜酶机制
Isr J Chem. 2016 Oct;56:9-10. doi: 10.1002/ijch.201600025. Epub 2016 Jul 26.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验