Hofmeyr J H, Kacser H, van der Merwe K J
Eur J Biochem. 1986 Mar 17;155(3):631-41. doi: 10.1111/j.1432-1033.1986.tb09534.x.
Moiety-conserved cycles are metabolic structures that interconvert different forms of a chemical moiety (such as ATP-ADP-AMP, the different forms of adenylate), while the sum of these forms remains constant. Their metabolic behaviour is treated within the framework of control analysis [Kacser, H. & Burns, J.A. (1973) Symp. Soc. Exp. Biol 27, 65-104]. To explain the importance of the conserved sum of cycle metabolites as a parameter of the system, the cycle is first regarded as a 'black box'. The interactions of the cycle with the rest of the system are expressed in terms of 'cycle elasticities' and 'cycle control coefficients' by the usual connectivity properties. The conserved sum is seen to be an 'external' parameter in the sense that its effect is described by a combined response expression. All cycle coefficients can be written in terms of elasticities and concentrations of cycle metabolites. The treatment shows how connectivity expressions should be modified when moiety-conserved cycles are present and establishes new summation and connectivity properties. The analysis is applied to a two-member moiety-conserved cycle and its general application is discussed.
部分守恒循环是一种代谢结构,它能将化学部分的不同形式(如ATP - ADP - AMP,腺苷酸的不同形式)相互转化,而这些形式的总和保持不变。它们的代谢行为在控制分析的框架内进行处理[凯瑟,H. & 伯恩斯,J.A.(1973年)《实验生物学学会研讨会论文集》27,65 - 104]。为了解释循环代谢物守恒总和作为系统参数的重要性,首先将该循环视为一个“黑箱”。通过通常的连通性属性,用“循环弹性”和“循环控制系数”来表示循环与系统其余部分的相互作用。从其效应由组合响应表达式描述的意义上来说,守恒总和被视为一个“外部”参数。所有循环系数都可以根据循环代谢物的弹性和浓度来表示。该处理展示了存在部分守恒循环时连通性表达式应如何修改,并建立了新的求和与连通性属性。该分析应用于一个二元部分守恒循环,并讨论了其一般应用。