Suppr超能文献

用于单侧膝关节外骨骼主动控制的实时步态意图识别

Real-Time Gait Intention Recognition for Active Control of Unilateral Knee Exoskeleton.

作者信息

Zhang Ziwei, Cai Xuefeng, Zhang Minbo, Chen Wuxiong, Chen Yijie, Wang Pu

机构信息

Rehabilitation Medicine Department, The Seventh Affiliated Hospital of Sun Yat-Sen Univerity, Shenzhen 518000, China.

Shenzhen Chwishay Intelligent Tech Co., Ltd., Shenzhen 518000, China.

出版信息

Appl Bionics Biomech. 2024 Nov 13;2024:9426782. doi: 10.1155/2024/9426782. eCollection 2024.

Abstract

Real-time gait estimation is important for the synchrony control of robotic exoskeleton to provide walking assistance. However, for stroke patients with hemiplegic paralysis, the gait pattern is very complex. Accurate and timely gait intention recognition is therefore difficult. To achieve human-robot synchrony control for an unilateral knee exoskeleton, a gait intention recognizer coupling the adaptive frequency oscillator (AFO) and back propagation neural networks (BPNN) is proposed in this paper. The BPNN is trained with gait data of healthy subjects and stroke patients to improve the accuracy of recognized gait pattern, which is then imported into flexible interaction module to provide appropriate assistance. To evaluate the performance of gait intention recognition, three stroke patients were recruited to conduct level ground walking tests. The kinematic and biomechanical data were captured in each test and processed for the evaluation. Experimental results demonstrate the effectiveness of gait intention recognition and movement assistance.

摘要

实时步态估计对于机器人外骨骼的同步控制以提供步行辅助至关重要。然而,对于偏瘫性瘫痪的中风患者,步态模式非常复杂。因此,准确及时地识别步态意图具有挑战性。为实现单侧膝关节外骨骼的人机同步控制,本文提出了一种将自适应频率振荡器(AFO)和反向传播神经网络(BPNN)相结合的步态意图识别器。通过健康受试者和中风患者的步态数据对BPNN进行训练,以提高识别步态模式的准确性,然后将其导入灵活交互模块以提供适当的辅助。为评估步态意图识别的性能,招募了三名中风患者进行平地行走测试。在每次测试中采集运动学和生物力学数据并进行处理以进行评估。实验结果证明了步态意图识别和运动辅助的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/41e5/11578655/9c4c5fbb3eed/ABB2024-9426782.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验