Suppr超能文献

放射组学在个性化放疗剂量和适应中的前景与未来。

The Promise and Future of Radiomics for Personalized Radiotherapy Dosing and Adaptation.

机构信息

Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins Medicine, Baltimore, MD.

Department of Radiation Oncology, University of Michigan, Ann Arbor, MI.

出版信息

Semin Radiat Oncol. 2023 Jul;33(3):252-261. doi: 10.1016/j.semradonc.2023.03.003.

Abstract

Quantitative image analysis, also known as radiomics, aims to analyze large-scale quantitative features extracted from acquired medical images using hand-crafted or machine-engineered feature extraction approaches. Radiomics has great potential for a variety of clinical applications in radiation oncology, an image-rich treatment modality that utilizes computed tomography (CT), magnetic resonance imaging (MRI), and positron emission tomography (PET) for treatment planning, dose calculation, and image guidance. A promising application of radiomics is in predicting treatment outcomes after radiotherapy such as local control and treatment-related toxicity using features extracted from pretreatment and on-treatment images. Based on these individualized predictions of treatment outcomes, radiotherapy dose can be sculpted to meet the specific needs and preferences of each patient. Radiomics can aid in tumor characterization for personalized targeting, especially for identifying high-risk regions within a tumor that cannot be easily discerned based on size or intensity alone. Radiomics-based treatment response prediction can aid in developing personalized fractionation and dose adjustments. In order to make radiomics models more applicable across different institutions with varying scanners and patient populations, further efforts are needed to harmonize and standardize the acquisition protocols by minimizing uncertainties within the imaging data.

摘要

定量图像分析,也称为放射组学,旨在使用手工或机器工程特征提取方法分析从获得的医学图像中提取的大规模定量特征。放射组学在放射肿瘤学的各种临床应用中具有巨大的潜力,放射肿瘤学是一种图像丰富的治疗方式,利用计算机断层扫描(CT)、磁共振成像(MRI)和正电子发射断层扫描(PET)进行治疗计划、剂量计算和图像引导。放射组学的一个有前途的应用是预测放射治疗后的治疗结果,例如局部控制和治疗相关的毒性,使用预处理和治疗期间图像中提取的特征。基于这些个体化的治疗结果预测,可以对放疗剂量进行塑形,以满足每个患者的特定需求和偏好。放射组学可以帮助进行肿瘤特征化,实现个性化靶向治疗,特别是识别基于大小或强度难以单独识别的肿瘤内的高风险区域。基于放射组学的治疗反应预测可以帮助制定个性化的分割和剂量调整。为了使放射组学模型在具有不同扫描仪和患者人群的不同机构中更具适用性,需要进一步努力通过最小化成像数据中的不确定性来协调和标准化采集协议。

相似文献

1
The Promise and Future of Radiomics for Personalized Radiotherapy Dosing and Adaptation.
Semin Radiat Oncol. 2023 Jul;33(3):252-261. doi: 10.1016/j.semradonc.2023.03.003.
3
"Radio-oncomics" : The potential of radiomics in radiation oncology.
Strahlenther Onkol. 2017 Oct;193(10):767-779. doi: 10.1007/s00066-017-1175-0. Epub 2017 Jul 7.
4
Applications of radiomics and machine learning for radiotherapy of malignant brain tumors.
Strahlenther Onkol. 2020 Oct;196(10):856-867. doi: 10.1007/s00066-020-01626-8. Epub 2020 May 11.
5
Radiomics: an Introductory Guide to What It May Foretell.
Curr Oncol Rep. 2019 Jun 25;21(8):70. doi: 10.1007/s11912-019-0815-1.
6
CT radiomics and PET radiomics: ready for clinical implementation?
Q J Nucl Med Mol Imaging. 2019 Dec;63(4):355-370. doi: 10.23736/S1824-4785.19.03192-3. Epub 2019 Sep 13.
7
Radiomics: the process and the challenges.
Magn Reson Imaging. 2012 Nov;30(9):1234-48. doi: 10.1016/j.mri.2012.06.010. Epub 2012 Aug 13.
8
Integration of PET/MR Hybrid Imaging into Radiation Therapy Treatment.
Magn Reson Imaging Clin N Am. 2017 May;25(2):377-430. doi: 10.1016/j.mric.2017.01.001.
9
Radiotherapy dose painting by circadian rhythm based radiomics.
Med Hypotheses. 2019 Dec;133:109415. doi: 10.1016/j.mehy.2019.109415. Epub 2019 Sep 30.
10
Radiomics in Nuclear Medicine Applied to Radiation Therapy: Methods, Pitfalls, and Challenges.
Int J Radiat Oncol Biol Phys. 2018 Nov 15;102(4):1117-1142. doi: 10.1016/j.ijrobp.2018.05.022. Epub 2018 May 22.

本文引用的文献

2
Randomized Phase II Study of Physiologic MRI-Directed Adaptive Radiation Boost in Poor Prognosis Head and Neck Cancer.
Clin Cancer Res. 2022 Dec 1;28(23):5049-5057. doi: 10.1158/1078-0432.CCR-22-1522.
10
A Guide to ComBat Harmonization of Imaging Biomarkers in Multicenter Studies.
J Nucl Med. 2022 Feb;63(2):172-179. doi: 10.2967/jnumed.121.262464. Epub 2021 Sep 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验