Suppr超能文献

BrainSegFounder:迈向神经影像分割的 3D 基础模型。

BrainSegFounder: Towards 3D foundation models for neuroimage segmentation.

机构信息

J. Crayton Pruitt Family Department of Biomedical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, USA.

University of Florida Research Computing, University of Florida, Gainesville, USA.

出版信息

Med Image Anal. 2024 Oct;97:103301. doi: 10.1016/j.media.2024.103301. Epub 2024 Aug 8.

Abstract

The burgeoning field of brain health research increasingly leverages artificial intelligence (AI) to analyze and interpret neuroimaging data. Medical foundation models have shown promise of superior performance with better sample efficiency. This work introduces a novel approach towards creating 3-dimensional (3D) medical foundation models for multimodal neuroimage segmentation through self-supervised training. Our approach involves a novel two-stage pretraining approach using vision transformers. The first stage encodes anatomical structures in generally healthy brains from the large-scale unlabeled neuroimage dataset of multimodal brain magnetic resonance imaging (MRI) images from 41,400 participants. This stage of pertaining focuses on identifying key features such as shapes and sizes of different brain structures. The second pretraining stage identifies disease-specific attributes, such as geometric shapes of tumors and lesions and spatial placements within the brain. This dual-phase methodology significantly reduces the extensive data requirements usually necessary for AI model training in neuroimage segmentation with the flexibility to adapt to various imaging modalities. We rigorously evaluate our model, BrainSegFounder, using the Brain Tumor Segmentation (BraTS) challenge and Anatomical Tracings of Lesions After Stroke v2.0 (ATLAS v2.0) datasets. BrainSegFounder demonstrates a significant performance gain, surpassing the achievements of the previous winning solutions using fully supervised learning. Our findings underscore the impact of scaling up both the model complexity and the volume of unlabeled training data derived from generally healthy brains. Both of these factors enhance the accuracy and predictive capabilities of the model in neuroimage segmentation tasks. Our pretrained models and code are at https://github.com/lab-smile/BrainSegFounder.

摘要

脑健康研究领域日益利用人工智能 (AI) 来分析和解释神经影像学数据。医学基础模型已经显示出在提高样本效率方面具有优异性能的潜力。这项工作介绍了一种通过自我监督训练为多模态神经影像分割创建 3 维 (3D) 医学基础模型的新方法。我们的方法涉及一种新颖的两阶段预训练方法,使用视觉转换器。第一阶段通过从来自 41400 名参与者的大规模多模态脑磁共振成像 (MRI) 图像的无标签神经影像数据集中编码一般健康大脑的解剖结构。这一阶段的主要重点是识别关键特征,如不同大脑结构的形状和大小。第二阶段的预训练阶段确定疾病特有的属性,如肿瘤和病变的几何形状以及大脑内的空间位置。这种双阶段方法大大减少了神经影像分割中 AI 模型训练通常所需的大量数据要求,同时具有适应各种成像模式的灵活性。我们使用脑肿瘤分割 (BraTS) 挑战和中风后病变解剖追踪 v2.0 (ATLAS v2.0) 数据集对我们的模型 BrainSegFounder 进行了严格评估。BrainSegFounder 表现出显著的性能提升,超过了以前使用完全监督学习的最佳解决方案的成就。我们的研究结果强调了扩大模型复杂性和源自一般健康大脑的未标记训练数据量的影响。这两个因素都提高了模型在神经影像分割任务中的准确性和预测能力。我们的预训练模型和代码可在 https://github.com/lab-smile/BrainSegFounder 获得。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/41aa/11382327/02ebbd8053d9/nihms-2017001-f0001.jpg

相似文献

引用本文的文献

本文引用的文献

2
Segment anything in medical images.在医学图像中分割任何内容。
Nat Commun. 2024 Jan 22;15(1):654. doi: 10.1038/s41467-024-44824-z.
4
Diffusion models in medical imaging: A comprehensive survey.扩散模型在医学成像中的应用:全面综述。
Med Image Anal. 2023 Aug;88:102846. doi: 10.1016/j.media.2023.102846. Epub 2023 May 23.
5
6
Foundation models for generalist medical artificial intelligence.通用型医学人工智能的基础模型。
Nature. 2023 Apr;616(7956):259-265. doi: 10.1038/s41586-023-05881-4. Epub 2023 Apr 12.
10
The Medical Segmentation Decathlon.医学分割十项全能
Nat Commun. 2022 Jul 15;13(1):4128. doi: 10.1038/s41467-022-30695-9.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验