MOE Key Lab of Bioinformatics, Department of Automation, BNRIST Bioinformatics Division, Tsinghua University, Beijing, China.
Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, China.
Genome Biol. 2024 Nov 21;25(1):297. doi: 10.1186/s13059-024-03436-y.
Understanding tumor cell heterogeneity and plasticity is crucial for overcoming drug resistance. Single-cell technologies enable analyzing cell states at a given condition, but catenating static cell snapshots to characterize dynamic drug responses remains challenging. Here, we propose scStateDynamics, an algorithm to infer tumor cell state dynamics and identify common drug effects by modeling single-cell level gene expression changes. Its reliability is validated on both simulated and lineage tracing data. Application to real tumor drug treatment datasets identifies more subtle cell subclusters with different drug responses beyond static transcriptome similarity and disentangles drug action mechanisms from the cell-level expression changes.
了解肿瘤细胞异质性和可塑性对于克服耐药性至关重要。单细胞技术能够在给定条件下分析细胞状态,但将静态细胞快照串联起来以描述动态药物反应仍然具有挑战性。在这里,我们提出了 scStateDynamics,这是一种通过模拟单细胞水平基因表达变化来推断肿瘤细胞状态动态并识别常见药物作用的算法。它在模拟和谱系追踪数据上的可靠性都得到了验证。将其应用于真实肿瘤药物治疗数据集,除了静态转录组相似性之外,还可以识别具有不同药物反应的更细微的细胞亚群,并从细胞水平的表达变化中分离出药物作用机制。