Suppr超能文献

利用集成的生物信息学和机器学习方法阐明将败血症与脂肪酸代谢相关基因联系起来的生物标志物。

Utilizing integrated bioinformatics and machine learning approaches to elucidate biomarkers linking sepsis to fatty acid metabolism-associated genes.

机构信息

Department of Emergency, Shangjinnanfu Hospital, West China Hospital, Sichuan University, Chengdu, 611730, Sichuan, China.

Department of Emergency Medicine, Laboratory of Emergency Medicine, West China Hospital, and Disaster Medical Center, Sichuan University, Chengdu, 610041, Sichuan, China.

出版信息

Sci Rep. 2024 Nov 22;14(1):28972. doi: 10.1038/s41598-024-80550-8.

Abstract

Sepsis, characterized as a systemic inflammatory response triggered by the invasion of pathogens, represents a continuum that may escalate from mild systemic infection to severe sepsis, potentially resulting in septic shock and multiple organ dysfunction syndrome. Advancements in lipidomics and metabolomics have unveiled the complex role of fatty acid metabolism (FAM) in both healthy and pathological states. Leveraging bioinformatics, this investigation aimed to identify and substantiate potential FAM-related genes (FAMGs) implicated in sepsis. The approach encompassed a differential expression analysis across a pool of 36 candidate FAMGs. GSEA and GSVA were employed to assess the biological significance and pathways associated with these genes. Furthermore, Lasso regression and SVM-RFE methodologies were implemented to determine key hub genes and assess the diagnostic prowess of nine selected FAMGs in sepsis identification. The study also investigated the correlation between these hub FAMGs. Validation was conducted through expression-level analysis using the GSE13904 and GSE65682 datasets. The study identified 13 sepsis-associated FAMGs, including ABCD2, ACSL3, ACSM1, ACSS1, ACSS2, ACOX1, ALDH9A1, ACACA, ACACB, FASN, OLAH, PPT1, and ELOVL4. As demonstrated by functional enrichment analysis results, these genes played key roles in several critical biological pathways, such as the Peroxisome, PPAR signaling pathway, and Insulin signaling pathway, all of which are intricately linked to metabolic regulation and inflammatory responses. The diagnostic potential of these FAMGs was further highlighted. In short, the expression patterns of these FAMGs c effectively distinguished sepsis cases from non-septic controls, which suggested that they may be promising biomarkers for early sepsis detection. This discovery not only enhanced our understanding of the molecular mechanisms underpinning sepsis but also paved the way for developing novel diagnostic tools and therapeutic strategies targeting metabolic dysregulation in septic patients. This research sheds light on 13 FAMGs associated with sepsis, providing valuable insights into novel biomarkers for this condition and facilitating the monitoring of its progression. These findings underscore the significance of purine metabolism in sepsis pathogenesis and open avenues for further investigation into therapeutic targets.

摘要

脓毒症,以病原体入侵引发的全身炎症反应为特征,是一个连续的过程,可能从轻症全身感染发展为严重脓毒症,进而导致感染性休克和多器官功能障碍综合征。脂质组学和代谢组学的进展揭示了脂肪酸代谢(FAM)在健康和病理状态下的复杂作用。本研究利用生物信息学方法,旨在鉴定和证实与脓毒症相关的潜在 FAM 相关基因(FAMGs)。该方法包括对 36 个候选 FAMG 进行差异表达分析。采用 GSEA 和 GSVA 评估这些基因与生物学意义和途径的相关性。此外,采用 Lasso 回归和 SVM-RFE 方法确定关键枢纽基因,并评估 9 个选定 FAMG 在脓毒症识别中的诊断能力。本研究还探讨了这些枢纽 FAMG 之间的相关性。通过使用 GSE13904 和 GSE65682 数据集进行表达水平分析进行验证。研究确定了 13 个与脓毒症相关的 FAMG,包括 ABCD2、ACSL3、ACSM1、ACSS1、ACSS2、ACOX1、ALDH9A1、ACACA、ACACB、FASN、OLA H、PPT1 和 ELOVL4。功能富集分析结果表明,这些基因在几个关键生物学途径中发挥关键作用,如过氧化物酶体、PPAR 信号通路和胰岛素信号通路,这些途径都与代谢调节和炎症反应密切相关。这些 FAMG 的诊断潜力也得到了进一步强调。简而言之,这些 FAMG 的表达模式能够有效区分脓毒症病例和非脓毒症对照,这表明它们可能是早期脓毒症检测的有前途的生物标志物。这一发现不仅加深了我们对脓毒症发病机制的分子机制的理解,还为开发针对脓毒症患者代谢失调的新型诊断工具和治疗策略铺平了道路。本研究揭示了 13 个与脓毒症相关的 FAMG,为该疾病提供了有价值的新型生物标志物,并促进了对其进展的监测。这些发现强调了嘌呤代谢在脓毒症发病机制中的重要性,并为进一步研究治疗靶点开辟了途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3445/11584728/e4e1e070902a/41598_2024_80550_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验