Suppr超能文献

生命早期肠道微生物组和代谢组的关联。

Associations between the gut microbiome and metabolome in early life.

机构信息

Department of Epidemiology, Geisel School of Medicine at Dartmouth College, Hanover, NH, USA.

Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth College, Hanover, NH, USA.

出版信息

BMC Microbiol. 2021 Aug 28;21(1):238. doi: 10.1186/s12866-021-02282-3.

Abstract

BACKGROUND

The infant intestinal microbiome plays an important role in metabolism and immune development with impacts on lifelong health. The linkage between the taxonomic composition of the microbiome and its metabolic phenotype is undefined and complicated by redundancies in the taxon-function relationship within microbial communities. To inform a more mechanistic understanding of the relationship between the microbiome and health, we performed an integrative statistical and machine learning-based analysis of microbe taxonomic structure and metabolic function in order to characterize the taxa-function relationship in early life.

RESULTS

Stool samples collected from infants enrolled in the New Hampshire Birth Cohort Study (NHBCS) at approximately 6-weeks (n = 158) and 12-months (n = 282) of age were profiled using targeted and untargeted nuclear magnetic resonance (NMR) spectroscopy as well as DNA sequencing of the V4-V5 hypervariable region from the bacterial 16S rRNA gene. There was significant inter-omic concordance based on Procrustes analysis (6 weeks: p = 0.056; 12 months: p = 0.001), however this association was no longer significant when accounting for phylogenetic relationships using generalized UniFrac distance metric (6 weeks: p = 0.376; 12 months: p = 0.069). Sparse canonical correlation analysis showed significant correlation, as well as identifying sets of microbe/metabolites driving microbiome-metabolome relatedness. Performance of machine learning models varied across different metabolites, with support vector machines (radial basis function kernel) being the consistently top ranked model. However, predictive R values demonstrated poor predictive performance across all models assessed (avg: - 5.06% -- 6 weeks; - 3.7% -- 12 months). Conversely, the Spearman correlation metric was higher (avg: 0.344-6 weeks; 0.265-12 months). This demonstrated that taxonomic relative abundance was not predictive of metabolite concentrations.

CONCLUSIONS

Our results suggest a degree of overall association between taxonomic profiles and metabolite concentrations. However, lack of predictive capacity for stool metabolic signatures reflects, in part, the possible role of functional redundancy in defining the taxa-function relationship in early life as well as the bidirectional nature of the microbiome-metabolome association. Our results provide evidence in favor of a multi-omic approach for microbiome studies, especially those focused on health outcomes.

摘要

背景

婴儿肠道微生物组在代谢和免疫发育中起着重要作用,对终生健康有影响。微生物组的分类组成与其代谢表型之间的联系尚不清楚,并且在微生物群落中分类与功能之间存在冗余。为了更深入地了解微生物组与健康之间的关系,我们对微生物的分类结构和代谢功能进行了综合的统计和基于机器学习的分析,以便在生命早期描述分类与功能之间的关系。

结果

从新罕布什尔州出生队列研究(NHBCS)中招募的婴儿在大约 6 周(n=158)和 12 个月(n=282)龄时收集粪便样本,使用靶向和非靶向核磁共振(NMR)光谱以及细菌 16S rRNA 基因 V4-V5 高变区的 DNA 测序进行分析。基于普罗克鲁斯分析(6 周:p=0.056;12 个月:p=0.001)有显著的组间一致性,但当使用广义 UniFrac 距离度量法考虑系统发育关系时,这种相关性不再显著(6 周:p=0.376;12 个月:p=0.069)。稀疏典型相关分析显示出显著的相关性,并确定了微生物/代谢物的集合,这些微生物/代谢物驱动微生物组-代谢组的相关性。机器学习模型在不同代谢物上的性能各不相同,支持向量机(径向基函数核)始终是表现最好的模型。然而,预测 R 值表明所有评估的模型的预测性能都很差(平均:-5.06%——6 周;-3.7%——12 个月)。相反,斯皮尔曼相关系数更高(平均:0.344-6 周;0.265-12 个月)。这表明分类相对丰度不能预测代谢物浓度。

结论

我们的结果表明分类谱和代谢物浓度之间存在一定程度的整体关联。然而,粪便代谢特征的预测能力不足,部分反映了功能冗余在定义生命早期分类与功能关系中的作用,以及微生物组-代谢组关联的双向性质。我们的结果为微生物组研究提供了支持,特别是那些关注健康结果的研究,建议采用多组学方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ce0/8400760/676bb3e68076/12866_2021_2282_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验