MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge, CB2 1QR, UK.
Healthspan Biotics Ltd, Milner Therapeutics Institute, Cambridge Biomedical Campus, Cambridge, UK.
Cell Death Dis. 2024 Nov 24;15(11):856. doi: 10.1038/s41419-024-07179-3.
Alzheimer's disease (AD) is the most common form of age-related dementia. In AD, the death of neurons in the central nervous system is associated with the accumulation of toxic amyloid β peptide (Aβ) and mitochondrial dysfunction. Mitochondria are signal transducers of metabolic and biochemical information, and their impairment can compromise cellular function. Mitochondria compartmentalise several pathways, including folate-dependent one-carbon (1C) metabolism and electron transport by respiratory complexes. Mitochondrial 1C metabolism is linked to electron transport through complex I of the respiratory chain. Here, we analysed the proteomic changes in a fly model of AD by overexpressing a toxic form of Aβ (Aβ-Arc). We found that expressing Aβ-Arc caused alterations in components of both complex I and mitochondrial 1C metabolism. Genetically enhancing mitochondrial 1C metabolism through Nmdmc improved mitochondrial function and was neuroprotective in fly models of AD. We also found that exogenous supplementation with the 1C donor folinic acid improved mitochondrial health in both mammalian cells and fly models of AD. We found that genetic variations in MTHFD2L, the human orthologue of Nmdmc, were linked to AD risk. Additionally, Mendelian randomisation showed that increased folate intake decreased the risk of developing AD. Overall, our data suggest enhancement of folate-dependent 1C metabolism as a viable strategy to delay the progression and attenuate the severity of AD.
阿尔茨海默病(AD)是最常见的与年龄相关的痴呆症形式。在 AD 中,中枢神经系统神经元的死亡与毒性淀粉样β肽(Aβ)的积累和线粒体功能障碍有关。线粒体是代谢和生化信息的信号转导器,其损伤会影响细胞功能。线粒体分隔了几个途径,包括叶酸依赖性一碳(1C)代谢和呼吸复合物的电子传递。线粒体 1C 代谢与通过呼吸链复合物 I 的电子传递相关联。在这里,我们通过过表达有毒形式的 Aβ(Aβ-Arc)分析了 AD 果蝇模型中的蛋白质组变化。我们发现,表达 Aβ-Arc 导致了复合物 I 和线粒体 1C 代谢的成分发生改变。通过 Nmdmc 增强线粒体 1C 代谢的遗传增强通过改善线粒体功能和在 AD 果蝇模型中具有神经保护作用。我们还发现,外源性补充 1C 供体叶酸酸可改善哺乳动物细胞和 AD 果蝇模型中的线粒体健康。我们发现,Nmdmc 的人类同源物 MTHFD2L 的遗传变异与 AD 风险相关。此外,孟德尔随机化表明,增加叶酸摄入可降低患 AD 的风险。总的来说,我们的数据表明,增强叶酸依赖性 1C 代谢是延缓 AD 进展和减轻 AD 严重程度的可行策略。