Suppr超能文献

用于高效生物催化剂和生物活性蛋白质的结构预测与计算蛋白质设计

Structure Prediction and Computational Protein Design for Efficient Biocatalysts and Bioactive Proteins.

作者信息

Buller Rebecca, Damborsky Jiri, Hilvert Donald, Bornscheuer Uwe T

机构信息

Competence Center for Biocatalysis, Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences, Einsiedlerstrasse 31, 8820, Wädenswil, Switzerland.

Loschmidt Laboratories, Dept. of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic.

出版信息

Angew Chem Int Ed Engl. 2025 Jan 10;64(2):e202421686. doi: 10.1002/anie.202421686. Epub 2024 Dec 2.

Abstract

The ability to predict and design protein structures has led to numerous applications in medicine, diagnostics and sustainable chemical manufacture. In addition, the wealth of predicted protein structures has advanced our understanding of how life's molecules function and interact. Honouring the work that has fundamentally changed the way scientists research and engineer proteins, the Nobel Prize in Chemistry in 2024 was awarded to David Baker for computational protein design and jointly to Demis Hassabis and John Jumper, who developed AlphaFold for machine-learning-based protein structure prediction. Here, we highlight notable contributions to the development of these computational tools and their importance for the design of functional proteins that are applied in organic synthesis. Notably, both technologies have the potential to impact drug discovery as any therapeutic protein target can now be modelled, allowing the de novo design of peptide binders and the identification of small molecule ligands through in silico docking of large compound libraries. Looking ahead, we highlight future research directions in protein engineering, medicinal chemistry and material design that are enabled by this transformative shift in protein science.

摘要

预测和设计蛋白质结构的能力已在医学、诊断学和可持续化学制造等领域带来了众多应用。此外,大量预测的蛋白质结构加深了我们对生命分子如何发挥功能和相互作用的理解。为表彰从根本上改变了科学家研究和设计蛋白质方式的工作,2024年诺贝尔化学奖授予大卫·贝克,以表彰其在计算蛋白质设计方面的贡献,并共同授予戴密斯·哈萨比斯和约翰·朱珀,他们开发了基于机器学习的蛋白质结构预测工具AlphaFold。在此,我们重点介绍这些计算工具开发过程中的显著贡献,以及它们对于设计应用于有机合成的功能性蛋白质的重要性。值得注意的是,这两种技术都有可能影响药物发现,因为现在任何治疗性蛋白质靶点都可以建模,从而能够从头设计肽结合物,并通过对大型化合物库进行计算机对接来识别小分子配体。展望未来,我们将重点介绍蛋白质科学这一变革性转变所推动的蛋白质工程、药物化学和材料设计等领域的未来研究方向。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验