Suppr超能文献

探索酶设计的领域:从分子模拟到机器学习。

Navigating the landscape of enzyme design: from molecular simulations to machine learning.

机构信息

School of Chemistry and Chemical Engineering, Queen's University, David Keir Building, Stranmillis Road, Belfast BT9 5AG, Northern Ireland, UK.

出版信息

Chem Soc Rev. 2024 Aug 12;53(16):8202-8239. doi: 10.1039/d4cs00196f.

Abstract

Global environmental issues and sustainable development call for new technologies for fine chemical synthesis and waste valorization. Biocatalysis has attracted great attention as the alternative to the traditional organic synthesis. However, it is challenging to navigate the vast sequence space to identify those proteins with admirable biocatalytic functions. The recent development of deep-learning based structure prediction methods such as AlphaFold2 reinforced by different computational simulations or multiscale calculations has largely expanded the 3D structure databases and enabled structure-based design. While structure-based approaches shed light on site-specific enzyme engineering, they are not suitable for large-scale screening of potential biocatalysts. Effective utilization of big data using machine learning techniques opens up a new era for accelerated predictions. Here, we review the approaches and applications of structure-based and machine-learning guided enzyme design. We also provide our view on the challenges and perspectives on effectively employing enzyme design approaches integrating traditional molecular simulations and machine learning, and the importance of database construction and algorithm development in attaining predictive ML models to explore the sequence fitness landscape for the design of admirable biocatalysts.

摘要

全球环境问题和可持续发展呼吁开发新的精细化学品合成和废物增值技术。生物催化作为传统有机合成的替代方法引起了极大的关注。然而,要在广阔的序列空间中找到具有令人钦佩的生物催化功能的蛋白质,这是具有挑战性的。最近,基于深度学习的结构预测方法(如 AlphaFold2)的发展得到了不同计算模拟或多尺度计算的加强,大大扩展了 3D 结构数据库,并实现了基于结构的设计。虽然基于结构的方法为特定部位的酶工程提供了启示,但它们不适合大规模筛选潜在的生物催化剂。使用机器学习技术有效地利用大数据为加速预测开辟了一个新时代。在这里,我们回顾了基于结构和机器学习指导的酶设计的方法和应用。我们还就有效利用整合传统分子模拟和机器学习的酶设计方法提出了我们的看法,以及数据库构建和算法开发在获得可用于探索序列适应性景观以设计令人钦佩的生物催化剂的预测性机器学习模型方面的重要性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验