Department of Physics, University of California, Santa Cruz, Santa Cruz, CA, USA.
Department of Physics, University of California, Berkeley, Berkeley, CA, USA.
Nature. 2024 Nov;635(8040):841-846. doi: 10.1038/s41586-024-08190-6. Epub 2024 Nov 27.
Quantum scars refer to eigenstates with enhanced probability density along unstable classical periodic orbits. First predicted 40 years ago, scars are special eigenstates that counterintuitively defy ergodicity in quantum systems whose classical counterpart is chaotic. Despite the importance and long history of scars, their direct visualization in quantum systems remains an open field. Here we demonstrate that, by using an in situ graphene quantum dot (GQD) creation and a wavefunction mapping technique, quantum scars are imaged for Dirac electrons with nanometre spatial resolution and millielectronvolt energy resolution with a scanning tunnelling microscope. Specifically, we find enhanced probability densities in the form of lemniscate ∞-shaped and streak-like patterns within our stadium-shaped GQDs. Both features show equal energy interval recurrence, consistent with predictions for relativistic quantum scars. By combining classical and quantum simulations, we demonstrate that the observed patterns correspond to two unstable periodic orbits that exist in our stadium-shaped GQD, thus proving that they are both quantum scars. In addition to providing unequivocal visual evidence of quantum scarring, our work offers insight into the quantum-classical correspondence in relativistic chaotic quantum systems and paves the way to experimental investigation of other recently proposed scarring species such as perturbation-induced scars, chiral scars and antiscarring.
量子疤痕是指沿着不稳定的经典周期轨道具有增强概率密度的本征态。疤痕最初是在 40 年前预测的,是量子系统中特殊的本征态,与混沌的经典对应物相反,它们违反了遍历性。尽管疤痕具有重要性和悠久的历史,但它们在量子系统中的直接可视化仍然是一个开放的领域。在这里,我们通过使用原位石墨烯量子点(GQD)的创建和波函数映射技术,展示了使用扫描隧道显微镜以纳米空间分辨率和毫电子伏特能量分辨率对狄拉克电子的量子疤痕进行成像。具体来说,我们在我们的体育场形状 GQD 中发现了勒曼双曲面∞形和条纹状图案形式的增强概率密度。这两种特征都显示出相等的能量间隔重现,与相对论量子疤痕的预测一致。通过结合经典和量子模拟,我们证明观察到的图案对应于我们的体育场形状 GQD 中存在的两个不稳定的周期轨道,因此证明它们都是量子疤痕。除了提供量子疤痕的明确视觉证据外,我们的工作还深入了解了相对论混沌量子系统中的量子-经典对应关系,并为实验研究其他最近提出的疤痕物种铺平了道路,如扰动诱导的疤痕、手性疤痕和反疤痕。