文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Advancements in tantalum based nanoparticles for integrated imaging and photothermal therapy in cancer management.

作者信息

Ifijen Ikhazuagbe H, Christopher Awoyemi Taiwo, Lekan Ogunnaike Korede, Aworinde Omowunmi Rebecca, Faderin Emmanuel, Obembe Oluwafunke, Abdulsalam Akanji Tawakalitu Folashade, Igboanugo Juliet C, Udogu Uzochukwu, Ogidi Godwin Onogwu, Iorkula Terungwa H, Osayawe Osasere Jude-Kelly

机构信息

Department of Research Outreach, Rubber Research Institute of Nigeria Iyanomo Benin City Nigeria

Laboratory Department, Covenant University Medical Centre Canaan land, KM 10, Idiroko Road Ota Ogun State Nigeria.

出版信息

RSC Adv. 2024 Oct 23;14(46):33681-33740. doi: 10.1039/d4ra05732e.


DOI:10.1039/d4ra05732e
PMID:39450067
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11498270/
Abstract

Tantalum-based nanoparticles (TaNPs) have emerged as promising tools in cancer management, owing to their unique properties that facilitate innovative imaging and photothermal therapy applications. This review provides a comprehensive overview of recent advancements in TaNPs, emphasizing their potential in oncology. Key features include excellent biocompatibility, efficient photothermal conversion, and the ability to integrate multifunctional capabilities, such as targeted drug delivery and enhanced imaging. Despite these advantages, challenges remain in establishing long-term biocompatibility, optimizing therapeutic efficacy through surface modifications, and advancing imaging techniques for real-time monitoring. Strategic approaches to address these challenges include surface modifications like PEGylation to improve biocompatibility, precise control over size and shape for effective photothermal therapy, and the development of biodegradable TaNPs for safe elimination from the body. Furthermore, integrating advanced imaging modalities-such as photoacoustic imaging, magnetic resonance imaging (MRI), and computed tomography (CT)-enable real-time tracking of TaNPs , which is crucial for clinical applications. Personalized medicine strategies that leverage biomarkers and genetic profiling also hold promise for tailoring TaNP-based therapies to individual patient profiles, thereby enhancing treatment efficacy and minimizing side effects. In conclusion, TaNPs represent a significant advancement in nanomedicine, poised to transform cancer treatment paradigms while expanding into various biomedical applications.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8a7/11498270/da9c84bdecc5/d4ra05732e-f25.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8a7/11498270/eaf47c79342d/d4ra05732e-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8a7/11498270/44c758da5e5e/d4ra05732e-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8a7/11498270/988ded7a4ddc/d4ra05732e-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8a7/11498270/9101e9a1324d/d4ra05732e-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8a7/11498270/d095c1bd9cd8/d4ra05732e-f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8a7/11498270/3a81d2ee6126/d4ra05732e-f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8a7/11498270/b658ca779bdf/d4ra05732e-f7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8a7/11498270/f0be1d48d1d8/d4ra05732e-f8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8a7/11498270/00d9c43fe0f2/d4ra05732e-f9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8a7/11498270/ef6700c3e0dd/d4ra05732e-f10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8a7/11498270/5c2ef3170080/d4ra05732e-f11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8a7/11498270/c7ec0f395aa2/d4ra05732e-f12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8a7/11498270/fbdb8e2093b8/d4ra05732e-f13.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8a7/11498270/02f5a21dfada/d4ra05732e-f14.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8a7/11498270/0e4c4eb922e5/d4ra05732e-f15.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8a7/11498270/6eba8d20fd94/d4ra05732e-f16.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8a7/11498270/b80004b075ef/d4ra05732e-f17.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8a7/11498270/035549b558b6/d4ra05732e-f18.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8a7/11498270/d1ff89ec6e13/d4ra05732e-f19.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8a7/11498270/1bead7b82a9f/d4ra05732e-f20.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8a7/11498270/e9053491c451/d4ra05732e-f21.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8a7/11498270/f778901c5dc6/d4ra05732e-f22.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8a7/11498270/1e28bf51805e/d4ra05732e-f23.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8a7/11498270/30dfafd639c9/d4ra05732e-f24.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8a7/11498270/da9c84bdecc5/d4ra05732e-f25.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8a7/11498270/eaf47c79342d/d4ra05732e-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8a7/11498270/44c758da5e5e/d4ra05732e-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8a7/11498270/988ded7a4ddc/d4ra05732e-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8a7/11498270/9101e9a1324d/d4ra05732e-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8a7/11498270/d095c1bd9cd8/d4ra05732e-f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8a7/11498270/3a81d2ee6126/d4ra05732e-f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8a7/11498270/b658ca779bdf/d4ra05732e-f7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8a7/11498270/f0be1d48d1d8/d4ra05732e-f8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8a7/11498270/00d9c43fe0f2/d4ra05732e-f9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8a7/11498270/ef6700c3e0dd/d4ra05732e-f10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8a7/11498270/5c2ef3170080/d4ra05732e-f11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8a7/11498270/c7ec0f395aa2/d4ra05732e-f12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8a7/11498270/fbdb8e2093b8/d4ra05732e-f13.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8a7/11498270/02f5a21dfada/d4ra05732e-f14.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8a7/11498270/0e4c4eb922e5/d4ra05732e-f15.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8a7/11498270/6eba8d20fd94/d4ra05732e-f16.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8a7/11498270/b80004b075ef/d4ra05732e-f17.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8a7/11498270/035549b558b6/d4ra05732e-f18.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8a7/11498270/d1ff89ec6e13/d4ra05732e-f19.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8a7/11498270/1bead7b82a9f/d4ra05732e-f20.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8a7/11498270/e9053491c451/d4ra05732e-f21.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8a7/11498270/f778901c5dc6/d4ra05732e-f22.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8a7/11498270/1e28bf51805e/d4ra05732e-f23.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8a7/11498270/30dfafd639c9/d4ra05732e-f24.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8a7/11498270/da9c84bdecc5/d4ra05732e-f25.jpg

相似文献

[1]
Advancements in tantalum based nanoparticles for integrated imaging and photothermal therapy in cancer management.

RSC Adv. 2024-10-23

[2]
Innovative approaches for cancer treatment: graphene quantum dots for photodynamic and photothermal therapies.

J Mater Chem B. 2024-5-8

[3]
Tantalum Nitride-Based Theranostic Agent for Photoacoustic Imaging-Guided Photothermal Therapy in the Second NIR Window.

Nanomaterials (Basel). 2023-5-23

[4]
Biomimetic theranostic nanoparticles for effective anticancer therapy and MRI imaging.

J Photochem Photobiol B. 2023-12

[5]
Folate-receptor-targeted laser-activable poly(lactide--glycolic acid) nanoparticles loaded with paclitaxel/indocyanine green for photoacoustic/ultrasound imaging and chemo/photothermal therapy.

Int J Nanomedicine. 2018-9-6

[6]
Advancements in synthetic CT generation from MRI: A review of techniques, and trends in radiation therapy planning.

J Appl Clin Med Phys. 2024-11

[7]
Antibody-modified Gold Nanobiostructures: Advancing Targeted Photodynamic Therapy for Improved Cancer Treatment.

Curr Pharm Des. 2023

[8]
The Advancing Role of Nanocomposites in Cancer Diagnosis and Treatment.

Int J Nanomedicine. 2024

[9]
A light-controllable specific drug delivery nanoplatform for targeted bimodal imaging-guided photothermal/chemo synergistic cancer therapy.

Acta Biomater. 2018-9-19

[10]
2D Superparamagnetic Tantalum Carbide Composite MXenes for Efficient Breast-Cancer Theranostics.

Theranostics. 2018-2-8

引用本文的文献

[1]
Nanoscale Porphyrin-Based Metal-Organic Frameworks for Enhanced Radiotherapy-Radiodynamic Therapy: A Comprehensive Review.

Pharmaceutics. 2025-7-4

[2]
Advances in Ultrasmall Inorganic Nanoparticles for Nanomedicine: From Diagnosis to Therapeutics.

ACS Appl Mater Interfaces. 2025-5-21

[3]
Protein-based nanoparticles for antimicrobial and cancer therapy: implications for public health.

RSC Adv. 2025-5-8

[4]
Platinum nanoparticles in cancer therapy: chemotherapeutic enhancement and ROS generation.

Med Oncol. 2025-1-9

本文引用的文献

[1]
Tantalum oxide nanoparticles as versatile and high-resolution X-ray contrast agent for intraductal image-guided ablative procedure in rodent models of breast cancer.

Npj Imaging. 2024

[2]
Cutting-edge developments in zinc oxide nanoparticles: synthesis and applications for enhanced antimicrobial and UV protection in healthcare solutions.

RSC Adv. 2024-7-3

[3]
Nanoparticles in tumor microenvironment remodeling and cancer immunotherapy.

J Hematol Oncol. 2024-4-2

[4]
Rational Design of Magnetic Nanoparticles as T-T Dual-Mode MRI Contrast Agents.

Molecules. 2024-3-18

[5]
Application of Nanoparticles for Magnetic Hyperthermia for Cancer Treatment-The Current State of Knowledge.

Cancers (Basel). 2024-3-14

[6]
Recent nanotheranostic approaches in cancer research.

Clin Exp Med. 2024-1-19

[7]
Nanoparticle-Mediated Hyperthermia and Cytotoxicity Mechanisms in Cancer.

Int J Mol Sci. 2023-12-25

[8]
PD-L1 blockade TAM-dependently potentiates mild photothermal therapy against triple-negative breast cancer.

J Nanobiotechnology. 2023-12-11

[9]
A review of physical, chemical and biological synthesis methods of bimetallic nanoparticles and applications in sensing, water treatment, biomedicine, catalysis and hydrogen storage.

Adv Colloid Interface Sci. 2023-11

[10]
Stokes and Anti-Stokes Luminescent Rare-Earth-Doped Tantalum Oxide Nanoparticles.

Inorg Chem. 2023-7-3

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索