Suppr超能文献

通过投影到形态学相关曲线上来识别空间可变基因。

Identifying spatially variable genes by projecting to morphologically relevant curves.

作者信息

Nicol Phillip B, Ma Rong, Xu Rosalind J, Moffitt Jeffrey R, Irizarry Rafael A

机构信息

Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA.

Department of Data Science, Dana Farber Cancer Institute, Boston, MA 02215, USA.

出版信息

bioRxiv. 2024 Nov 21:2024.11.21.624653. doi: 10.1101/2024.11.21.624653.

Abstract

Spatial transcriptomics enables high-resolution gene expression measurements while preserving the two-dimensional spatial organization of the sample. A common objective in spatial transcriptomics data analysis is to identify spatially variable genes within predefined cell types or regions within the tissue. However, these regions are often implicitly one-dimensional, making standard two-dimensional coordinate-based methods less effective as they overlook the underlying tissue organization. Here we introduce a methodology grounded in spectral graph theory to elucidate a one-dimensional curve that effectively approximates the spatial coordinates of the examined sample. This curve is then used to establish a new coordinate system that better reflects tissue morphology. We then develop a generalized additive model (GAM) to detect genes with variable expression in the new coordinate system. Our approach directly models gene counts, thereby eliminating the need for normalization or transformations to satisfy normality assumptions. We demonstrate improved performance relative to current methods based on hypothesis testing, while also accurately estimating gene expression patterns and precisely identifying spatial loci where deviations from constant expression are observed. We validate our approach through extensive simulations and by analyzing experimental data from multiple platforms such as Slide-seq and MERFISH.

摘要

空间转录组学能够在保留样本二维空间组织的同时进行高分辨率基因表达测量。空间转录组学数据分析的一个常见目标是在组织内预定义的细胞类型或区域中识别空间可变基因。然而,这些区域通常隐含地是一维的,这使得基于二维坐标的标准方法效果较差,因为它们忽略了潜在的组织结构。在这里,我们引入一种基于谱图理论的方法,以阐明一条有效近似所检查样本空间坐标的一维曲线。然后,该曲线用于建立一个能更好反映组织形态的新坐标系。接着,我们开发了一种广义相加模型(GAM),以在新坐标系中检测具有可变表达的基因。我们的方法直接对基因计数进行建模,从而无需进行归一化或变换来满足正态性假设。相对于基于假设检验的当前方法,我们展示了更好的性能,同时还能准确估计基因表达模式,并精确识别观察到偏离恒定表达的空间位点。我们通过广泛的模拟以及分析来自Slide-seq和MERFISH等多个平台的实验数据来验证我们的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af11/11601533/9ebcd350edcd/nihpp-2024.11.21.624653v1-f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验