Suppr超能文献

stMMR:基于多模态特征表示的空间分辨转录组学进行准确稳健的空间域识别。

stMMR: accurate and robust spatial domain identification from spatially resolved transcriptomics with multimodal feature representation.

机构信息

Center of Intelligent Medicine, School of Control Science and Engineering, Shandong University, Jinan 250061, China.

Institute of Science and Technology for Brain-Inspired Intelligence, Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Fudan University, Shanghai 200433, China.

出版信息

Gigascience. 2024 Jan 2;13. doi: 10.1093/gigascience/giae089.

Abstract

BACKGROUND

Deciphering spatial domains using spatially resolved transcriptomics (SRT) is of great value for characterizing and understanding tissue architecture. However, the inherent heterogeneity and varying spatial resolutions present challenges in the joint analysis of multimodal SRT data.

RESULTS

We introduce a multimodal geometric deep learning method, named stMMR, to effectively integrate gene expression, spatial location, and histological information for accurate identifying spatial domains from SRT data. stMMR uses graph convolutional networks and a self-attention module for deep embedding of features within unimodality and incorporates similarity contrastive learning for integrating features across modalities.

CONCLUSIONS

Comprehensive benchmark analysis on various types of spatial data shows superior performance of stMMR in multiple analyses, including spatial domain identification, pseudo-spatiotemporal analysis, and domain-specific gene discovery. In chicken heart development, stMMR reconstructed the spatiotemporal lineage structures, indicating an accurate developmental sequence. In breast cancer and lung cancer, stMMR clearly delineated the tumor microenvironment and identified marker genes associated with diagnosis and prognosis. Overall, stMMR is capable of effectively utilizing the multimodal information of various SRT data to explore and characterize tissue architectures of homeostasis, development, and tumor.

摘要

背景

使用空间分辨转录组学(SRT)破译空间域对于描述和理解组织架构具有重要价值。然而,多模态 SRT 数据的联合分析存在固有异质性和不同的空间分辨率的挑战。

结果

我们引入了一种多模态几何深度学习方法,称为 stMMR,用于从 SRT 数据中有效整合基因表达、空间位置和组织学信息,从而准确识别空间域。stMMR 使用图卷积网络和自注意力模块对单模态内的特征进行深度嵌入,并采用相似性对比学习来整合跨模态的特征。

结论

对各种类型的空间数据进行综合基准分析表明,stMMR 在多个分析中的表现均优于其他方法,包括空间域识别、伪时空分析和特定领域基因发现。在鸡心脏发育中,stMMR 重建了时空谱系结构,表明了准确的发育顺序。在乳腺癌和肺癌中,stMMR 清晰地描绘了肿瘤微环境,并鉴定了与诊断和预后相关的标记基因。总的来说,stMMR 能够有效地利用各种 SRT 数据的多模态信息来探索和描述稳态、发育和肿瘤的组织架构。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b45a/11604062/5a442be6504f/giae089fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验