Suppr超能文献

Spall:使用分解网络从空间分辨转录组学数据中准确且稳健地揭示细胞景观。

Spall: accurate and robust unveiling cellular landscapes from spatially resolved transcriptomics data using a decomposition network.

作者信息

Jiang Zhongning, Huang Wei, Lam Raymond H W, Zhang Wei

机构信息

Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, 999077, China.

City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, Guangdong, China.

出版信息

BMC Bioinformatics. 2024 Dec 18;25(1):379. doi: 10.1186/s12859-024-06003-1.

Abstract

Recent developments in spatially resolved transcriptomics (SRT) enable the characterization of spatial structures for different tissues. Many decomposition methods have been proposed to depict the cellular distribution within tissues. However, existing computational methods struggle to balance spatial continuity in cell distribution with the preservation of cell-specific characteristics. To address this, we propose Spall, a novel decomposition network that integrates scRNA-seq data with SRT data to accurately infer cell type proportions. Spall introduced the GATv2 module, featuring a flexible dynamic attention mechanism to capture relationships between spots. This improves the identification of cellular distribution patterns in spatial analysis. Additionally, Spall incorporates skip connections to address the loss of cell-specific information, thereby enhancing the prediction capability for rare cell types. Experimental results show that Spall outperforms the state-of-the-art methods in reconstructing cell distribution patterns on multiple datasets. Notably, Spall reveals tumor heterogeneity in human pancreatic ductal adenocarcinoma samples and delineates complex tissue structures, such as the laminar organization of the mouse cerebral cortex and the mouse cerebellum. These findings highlight the ability of Spall to provide reliable low-dimensional embeddings for downstream analyses, offering new opportunities for deciphering tissue structures.

摘要

空间分辨转录组学(SRT)的最新进展使得对不同组织的空间结构进行表征成为可能。已经提出了许多分解方法来描绘组织内的细胞分布。然而,现有的计算方法难以在细胞分布的空间连续性与保留细胞特异性特征之间取得平衡。为了解决这个问题,我们提出了Spall,一种新颖的分解网络,它将单细胞RNA测序(scRNA-seq)数据与SRT数据整合起来,以准确推断细胞类型比例。Spall引入了GATv2模块,其具有灵活的动态注意力机制来捕捉斑点之间的关系。这改进了空间分析中细胞分布模式的识别。此外,Spall纳入了跳跃连接来解决细胞特异性信息的丢失问题,从而增强了对稀有细胞类型的预测能力。实验结果表明,在多个数据集上重建细胞分布模式时,Spall优于现有最先进的方法。值得注意的是,Spall揭示了人类胰腺导管腺癌样本中的肿瘤异质性,并描绘了复杂的组织结构,如小鼠大脑皮层和小鼠小脑的分层组织。这些发现突出了Spall为下游分析提供可靠的低维嵌入的能力,为解读组织结构提供了新的机会。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7684/11656923/a7adc45f9bc3/12859_2024_6003_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验