Holmes Maxx, Wang Zhinuo Jenny, Doste Ruben, Camps Julia, Martinez-Navarro Hector, Smith Hannah, Tomek Jakub, Rodriguez Blanca
Department of Computer Science, University of Oxford, Oxford, United Kingdom.
J Mol Cell Cardiol Plus. 2025 Aug 9;13:100479. doi: 10.1016/j.jmccpl.2025.100479. eCollection 2025 Sep.
Women are under-represented in cardiovascular research, leading to poorer outcomes. Investigating sex-differences in electromechanical function is essential for improving therapy evaluation. This study presents sex-specific human cellular and biventricular electromechanical models for mechanistic investigation of sex-differences in therapeutic response.
Protein genomic expression data from healthy human myocytes calibrated sex-specific electrophysiological models, integrated into biventricular models with male and female anatomies. Multi-scale validation utilised sex-specific clinical and experimental datasets, including responses to drug action. Ionic mechanisms underlying sex-differences in drug response were explored.
Simulations showed agreement with clinical ECGs, including QTc intervals (Male: 312 ms; Female: 339 ms), and T-wave amplitude (6-9 % difference). Mechanical biomarkers (LVEF, Female: 68 %; Male: 50 %) matched sex-stratified UK Biobank data ( = 806; 46 % Male). ECG sex-characteristics were driven by ionic differences, while mechanical differences stemmed from anatomical and ionic differences. Simulations predicted exacerbated QTc prolongation under Dofetilide in women (54-78 % higher than males) and T-wave amplitude reduction in men (max: -0.25 mV). Verapamil increased T-wave amplitude in females and decreased it in males, without affecting QTc. Simulations demonstrated reduced repolarisation reserve and increased QTc susceptibility in women via hERG inhibition, while enhanced calcium buffering protected against T-wave amplitude loss. LVEF changes in response to calcium block were more sensitive to anatomical differences between male and female than to ionic sex phenotypes.
Sex differences in repolarisation reserve, calcium handling, and anatomy are key factors underpinning ECG and LVEF responses to drugs. Specifically, under calcium block, females showed more preserved LVEF, while under hERG block, females showed more QTc prolongation.
女性在心血管研究中的代表性不足,导致治疗效果较差。研究电机械功能的性别差异对于改善治疗评估至关重要。本研究提出了性别特异性的人体细胞和双心室电机械模型,用于对治疗反应中的性别差异进行机制研究。
来自健康人类心肌细胞的蛋白质基因组表达数据校准了性别特异性电生理模型,并将其整合到具有男性和女性解剖结构的双心室模型中。多尺度验证利用了性别特异性的临床和实验数据集,包括对药物作用的反应。探索了药物反应中性别差异背后的离子机制。
模拟结果与临床心电图相符,包括QTc间期(男性:312毫秒;女性:339毫秒)和T波振幅(差异为6 - 9%)。机械生物标志物(左心室射血分数,女性:68%;男性:50%)与英国生物银行按性别分层的数据相匹配(n = 806;46%为男性)。心电图的性别特征由离子差异驱动,而机械差异源于解剖和离子差异。模拟预测,女性在使用多非利特时QTc延长加剧(比男性高54 - 78%),男性T波振幅降低(最大:-0.25毫伏)。维拉帕米增加了女性的T波振幅,降低了男性的T波振幅,而不影响QTc。模拟表明,通过抑制hERG,女性的复极储备降低,QTc易感性增加,而增强的钙缓冲可防止T波振幅降低。钙通道阻滞引起的左心室射血分数变化对男性和女性之间的解剖差异比对离子性别表型更敏感。
复极储备、钙处理和解剖结构的性别差异是心电图和左心室射血分数对药物反应的关键因素。具体而言,在钙通道阻滞时,女性的左心室射血分数保留更多,而在抑制hERG时,女性的QTc延长更多。