Suppr超能文献

基于深度学习的容积神经影像学分类的增强和评估,使用 3D 到 2D 知识蒸馏。

Enhancement and evaluation for deep learning-based classification of volumetric neuroimaging with 3D-to-2D knowledge distillation.

机构信息

Department of Management Information Systems, Dong-A University, 225, Gudeok-ro, Seo-gu, Busan, 49236, Republic of Korea.

Department of Translational Biomedical Sciences, College of Medicine, Dong-A University, Busan, Republic of Korea.

出版信息

Sci Rep. 2024 Nov 28;14(1):29611. doi: 10.1038/s41598-024-80938-6.

Abstract

The application of deep learning techniques for the analysis of neuroimaging has been increasing recently. The 3D Convolutional Neural Network (CNN) technology, which is commonly adopted to encode volumetric information, requires a large number of datasets. However, due to the nature of the medical domain, there are limitations in the number of data available. This is because the cost of acquiring imaging is expensive and the use of personnel to annotate diagnostic labels is resource-intensive. For these reasons, several prior studies have opted to use comparatively lighter 2D CNNs instead of the complex 3D CNN technology. They analyze using projected 2D datasets created from representative slices extracted from 3D volumetric imaging. However, this approach, by selecting only projected 2D slices from the entire volume, reflects only partial volumetric information. This poses a risk of developing lesion diagnosis systems without a deep understanding of the interrelations among volumetric data. We propose a novel 3D-to-2D knowledge distillation framework that utilizes not only the projected 2D dataset but also the original 3D volumetric imaging dataset. This framework is designed to employ volumetric prior knowledge in training 2D CNNs. Our proposed method includes three modules: (i) a 3D teacher network that encodes volumetric prior knowledge from the 3D dataset, (ii) a 2D student network that encodes partial volumetric information from the 2D dataset, and aims to develop an understanding of the original volumetric imaging, and (iii) a distillation loss introduced to reduce the gap in the graph representation expressing the relationship between data in the feature embedding spaces of (i) and (ii), thereby enhancing the final performance. The effectiveness of our proposed method is demonstrated by improving the classification performance orthogonally across various 2D projection methods on two datasets from the 123I-DaTscan SPECT and 18 F-AV133 PET from Parkinson's Progression Markers Initiative (PPMI). Notably, when our approach is applied to the FuseMe approach, it achieves an F1 score of 98.30%, which is higher than that of the 3D teacher network (97.66%).

摘要

深度学习技术在神经影像学分析中的应用最近有所增加。3D 卷积神经网络(CNN)技术常用于对体数据集进行编码,需要大量数据集。但是,由于医学领域的性质,可用数据的数量存在限制。这是因为获取图像的成本很高,而且使用人员来注释诊断标签需要大量资源。出于这些原因,一些先前的研究选择使用相对较轻的 2D CNN 而不是复杂的 3D CNN 技术。他们使用从 3D 体成像中提取的代表性切片创建的投影 2D 数据集进行分析。但是,这种方法通过仅从整个体中选择投影的 2D 切片,仅反映了部分体信息。这存在开发病变诊断系统的风险,而没有深入了解体数据之间的相互关系。我们提出了一种新颖的 3D 到 2D 知识蒸馏框架,该框架不仅利用投影 2D 数据集,还利用原始 3D 体成像数据集。该框架旨在在训练 2D CNN 时利用体先验知识。我们提出的方法包括三个模块:(i)3D 教师网络,该网络从 3D 数据集编码体先验知识,(ii)2D 学生网络,该网络从 2D 数据集编码部分体信息,并旨在了解原始体成像,以及(iii)引入的蒸馏损失,以缩小(i)和(ii)在特征嵌入空间中表示数据之间关系的图表示之间的差距,从而提高最终性能。我们的方法通过在来自帕金森氏病进展标志物倡议(PPMI)的 123I-DaTscan SPECT 和 18F-AV133 PET 的两个数据集上,通过各种 2D 投影方法进行正交改善分类性能来证明其有效性。值得注意的是,当我们的方法应用于 FuseMe 方法时,它的 F1 分数达到 98.30%,高于 3D 教师网络(97.66%)。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验