School of Mathematics and Computer Science, Dali University, Dali, China.
School of Information Science and Technology, Fudan University, Shanghai, China.
Sci Rep. 2024 Nov 29;14(1):29689. doi: 10.1038/s41598-024-81523-7.
Cardiovascular diseases, characterized by high morbidity, disability, and mortality rates, are a collective term for disorders affecting the heart's structure or function. In clinical practice, physicians often manually delineate the left ventricular border on echocardiograms to obtain critical physiological parameters such as left ventricular volume and ejection fraction, which are essential for accurate cardiac function assessment. However, most state-of-the-art models focus excessively on pushing the boundaries of segmentation accuracy at the expense of computational complexity, overlooking the substantial demand for high-performance computing resources required for model inference in clinical applications. This paper introduces a novel left ventricle echocardiographic segmentation model that efficiently combines the SwiftFormer Encoder and U-Lite Decoder to reduce network parameter count and computational complexity. Additionally, we incorporate the Spatial and Channel reconstruction Convolution (SCConv) module through spatial and channel reconstruction during downsampling and replace the Binary Cross Entropy Loss (BCELoss) with Polynomial Loss (PolyLoss) to achieve superior segmentation performance. On the EchoNet-Dynamic dataset, our network achieves a Dice similarity coefficient of 0.92714 for left ventricle segmentation, with FLoating-point Operations Per Second (FLOPs) and Parameters of just 4472.55 M and 28.96 M respectively. Extensive experimental results on the EchoNet-Dynamic dataset demonstrate that the proposed modifications deliver competitive performance at a lower computational cost.
心血管疾病以高发病率、高致残率和高死亡率为特征,是一组影响心脏结构或功能的疾病的统称。在临床实践中,医生通常手动描绘超声心动图上的左心室边界,以获得左心室容积和射血分数等关键生理参数,这些参数对于准确评估心脏功能至关重要。然而,大多数最先进的模型过于注重在分割精度上推陈出新,而忽略了模型推断在临床应用中对高性能计算资源的大量需求,从而导致计算复杂度增加。本文提出了一种新颖的左心室超声心动图分割模型,该模型有效地结合了 SwiftFormer 编码器和 U-Lite 解码器,以减少网络参数数量和计算复杂度。此外,我们通过在降采样过程中的空间和通道重建引入了空间和通道重建卷积(SCConv)模块,并使用多项式损失(PolyLoss)替代二进制交叉熵损失(BCELoss),以实现卓越的分割性能。在 EchoNet-Dynamic 数据集上,我们的网络在左心室分割方面实现了 0.92714 的 Dice 相似系数,浮点运算次数(FLOPs)和参数分别仅为 4472.55M 和 28.96M。在 EchoNet-Dynamic 数据集上的广泛实验结果表明,所提出的改进在较低的计算成本下提供了有竞争力的性能。