Shusterman Vladimir, Swenne Cees A, Hoffman Stacy, Strollo Patrick J, London Barry
Division of Cardiovascular Medicine, The University of Iowa, Iowa City, IA, United States of America; PinMed, Inc., Pittsburgh, PA, United States of America.
Leiden University Medical Center, Leiden, The Netherlands.
J Electrocardiol. 2025 Jan-Feb;88:153837. doi: 10.1016/j.jelectrocard.2024.153837. Epub 2024 Nov 22.
We present a concise review of the background, pitfalls, and potential solutions for the noninvasive evaluation and continuous tracking of cardiac autonomic nervous system activity (ANSA), using surface-ECG-accessible parameters, including heart rate (HR), heart-rate variability (HRV), and cardiac repolarization. These parameters have provided insights into the dynamics of cardiac ANSA in controlled experiments and have proved useful in risk assessment with respect to sudden cardiac death and all-cause mortality in some patient populations, as well as in implantable device programming. Yet attempts to translate these parameters from the laboratory environment to ambulatory settings have been hampered by the presence of multiple uncontrolled factors, including changes in blood pressure, body position, physical activity, and respiration frequency. We show that a single-parameter-based, simplified cardiac ANSA evaluation in an uncontrolled ambulatory setting could be inaccurate, and we discuss several approaches to improve accuracy. Discerning cardiac ANSA effects in uncontrolled ambulatory environments requires tracking multiple physiological processes, preferably using multisensor, multiparametric monitoring and controlling some physiological variables (e.g., respiration frequency); data fusion and machine-learning-based analytics are instrumental for developing more accurate personalized ANSA evaluation.
我们简要回顾了利用包括心率(HR)、心率变异性(HRV)和心脏复极等可通过体表心电图获取的参数,对心脏自主神经系统活动(ANSA)进行无创评估和连续跟踪的背景、陷阱及潜在解决方案。这些参数在对照实验中为了解心脏ANSA的动态变化提供了见解,并且在某些患者群体的心脏性猝死和全因死亡率风险评估以及植入式设备编程方面已证明是有用的。然而,将这些参数从实验室环境转化到动态环境的尝试受到多种不受控制因素的阻碍,包括血压、体位、身体活动和呼吸频率的变化。我们表明,在不受控制的动态环境中基于单一参数的简化心脏ANSA评估可能不准确,并讨论了几种提高准确性的方法。在不受控制的动态环境中识别心脏ANSA效应需要跟踪多个生理过程,最好使用多传感器、多参数监测并控制一些生理变量(如呼吸频率);数据融合和基于机器学习的分析有助于开发更准确的个性化ANSA评估。