Suppr超能文献

多组学网络分析确定阿片类药物成瘾中失调的神经生物学途径。

Multiomic Network Analysis Identifies Dysregulated Neurobiological Pathways in Opioid Addiction.

作者信息

Sullivan Kyle A, Kainer David, Lane Matthew, Cashman Mikaela, Miller J Izaak, Garvin Michael R, Townsend Alice, Quach Bryan C, Willis Caryn, Kruse Peter, Gaddis Nathan C, Mathur Ravi, Corradin Olivia, Maher Brion S, Scacheri Peter C, Sanchez-Roige Sandra, Palmer Abraham A, Troiani Vanessa, Chesler Elissa J, Kember Rachel L, Kranzler Henry R, Justice Amy C, Xu Ke, Aouizerat Bradley E, Hancock Dana B, Johnson Eric O, Jacobson Daniel A

机构信息

Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee.

The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee-Knoxville, Knoxville, Tennessee.

出版信息

Biol Psychiatry. 2025 Jul 1;98(1):11-22. doi: 10.1016/j.biopsych.2024.11.013. Epub 2024 Nov 29.

Abstract

BACKGROUND

Opioid addiction is a worldwide public health crisis. In the United States, for example, opioids cause more drug overdose deaths than any other substance. However, opioid addiction treatments have limited efficacy, meaning that additional treatments are needed.

METHODS

To help address this problem, we used network-based machine learning techniques to integrate results from genome-wide association studies of opioid use disorder and problematic prescription opioid misuse with transcriptomic, proteomic, and epigenetic data from the dorsolateral prefrontal cortex of people who died of opioid overdose and control individuals.

RESULTS

We identified 211 highly interrelated genes identified by genome-wide association studies or dysregulation in the dorsolateral prefrontal cortex of people who died of opioid overdose that implicated the Akt, BDNF (brain-derived neurotrophic factor), and ERK (extracellular signal-regulated kinase) pathways, identifying 414 drugs targeting 48 of these opioid addiction-associated genes. Some of the identified drugs are approved to treat other substance use disorders or depression.

CONCLUSIONS

Our synthesis of multiomics using a systems biology approach revealed key gene targets that could contribute to drug repurposing, genetics-informed addiction treatment, and future discovery.

摘要

背景

阿片类药物成瘾是一场全球性的公共卫生危机。例如,在美国,阿片类药物导致的药物过量死亡人数超过其他任何物质。然而,阿片类药物成瘾治疗的疗效有限,这意味着需要更多的治疗方法。

方法

为了帮助解决这个问题,我们使用基于网络的机器学习技术,将阿片类药物使用障碍和问题性处方阿片类药物滥用的全基因组关联研究结果与死于阿片类药物过量的人和对照个体的背外侧前额叶皮质的转录组学、蛋白质组学和表观遗传学数据整合起来。

结果

我们在死于阿片类药物过量的人的背外侧前额叶皮质中,通过全基因组关联研究或失调鉴定出211个高度相关的基因,这些基因涉及Akt、BDNF(脑源性神经营养因子)和ERK(细胞外信号调节激酶)通路,确定了针对48个与阿片类药物成瘾相关基因的414种药物。一些已鉴定出的药物被批准用于治疗其他物质使用障碍或抑郁症。

结论

我们采用系统生物学方法对多组学进行的综合分析揭示了关键基因靶点,这些靶点可能有助于药物再利用、基于遗传学的成瘾治疗以及未来的发现。

相似文献

9
Opioids for neuropathic pain.用于神经性疼痛的阿片类药物。
Cochrane Database Syst Rev. 2013 Aug 29;2013(8):CD006146. doi: 10.1002/14651858.CD006146.pub2.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验