Department of Endocrinology and Metabolism, Kyung Hee University Medical Center, Kyung Hee University College of Medicine, 23 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, South Korea.
Center for Digital Health, Medical Science Research Institute, Kyung Hee University Medical Center, Kyung Hee University College of Medicine, Seoul, South Korea.
Sci Rep. 2024 Nov 30;14(1):29791. doi: 10.1038/s41598-024-79654-y.
This study aimed to develop and validate a machine learning (ML)-based model for predicting liposuction volumes in patients with obesity. This study used longitudinal cohort data from 2018 to 2023 from five nationwide centers affiliated with 365MC Liposuction Hospital, the largest liposuction hospitals in Korea. Fifteen variables related to patient profiles were integrated and applied to various ML algorithms, including random forest, support vector, XGBoost, decision tree, and AdaBoost regressors. Performance evaluation employed mean absolute error (MAE), root mean square error (RMSE), and R-squared (R) score. Feature importance and RMSE importance analyses were performed to compare the influence of each feature on prediction performance. A total of 9,856 were included in the final analysis. The random forest regressor model best predicted the liposuction volume (MAE, 0.197, RMSE, 0.249, R, 0.792). Body fat mass and waist circumference were the most important features of the random forest regressor model (feature importance 71.55 and 13.21, RMSE importance 0.201 and 0.221, respectively). Leveraging this model, a web-based application was developed to suggest ideal liposuction volumes. These findings could be used in clinical practice to enhance decision-making and tailor surgical interventions to individual patient needs, thereby improving overall surgical efficacy and patient satisfaction.
本研究旨在开发和验证一种基于机器学习(ML)的肥胖患者吸脂量预测模型。本研究使用了来自韩国最大吸脂医院 365MC 吸脂医院的五个全国性中心的 2018 年至 2023 年的纵向队列数据。整合了与患者特征相关的 15 个变量,并应用于各种 ML 算法,包括随机森林、支持向量、XGBoost、决策树和 AdaBoost 回归器。采用平均绝对误差(MAE)、均方根误差(RMSE)和 R 平方(R)评分进行性能评估。进行了特征重要性和 RMSE 重要性分析,以比较每个特征对预测性能的影响。最终分析共纳入 9856 例患者。随机森林回归器模型对吸脂量的预测效果最佳(MAE 为 0.197,RMSE 为 0.249,R 为 0.792)。体脂肪质量和腰围是随机森林回归器模型最重要的特征(特征重要性分别为 71.55 和 13.21,RMSE 重要性分别为 0.201 和 0.221)。基于该模型,开发了一个基于网络的应用程序,以建议理想的吸脂量。这些发现可用于临床实践,以增强决策并根据个体患者的需求调整手术干预,从而提高整体手术效果和患者满意度。