Vippala Krishna, Wagle Shreyas Shankar, Rathee Parul, Mulamukkil Keerthana, Ayoub Yousif, Komlosh Arthur, Gazal Sharon, Avramovitch Bianca, Amir Roey J
Department of Organic Chemistry, School of Chemistry, Faculty of Exact Sciences, Tel-Aviv University, Tel- Aviv 6997801, Israel.
Tel-Aviv University Center for Nanoscience and Nanotechnology, Tel-Aviv University, Tel-Aviv 6997801, Israel.
Macromolecules. 2024 Nov 4;57(22):10557-10566. doi: 10.1021/acs.macromol.4c01425. eCollection 2024 Nov 26.
In recent years, the development of nanoreactors, such as micellar nanoreactors (MNRs) for catalytic transformations, has gained significant attention due to their potential in enhancing reaction rates, selectivity, efficiency, and, as importantly, the ability to conduct organic chemistry in aqueous solutions. Among these, the copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) reaction represents a pivotal transformation and is widely used in the synthesis of bioconjugates, pharmaceuticals, and advanced materials. This study aims toward advancing our understanding of the design and utilization of polymeric amphiphiles containing tris-triazole ligands as an integral element for CuAAC reactions within MNRs. Specifically, our investigation delves into three critical factors that influence the reaction rate within MNRs: hydrophobicity, architectural configuration of the polymeric ligands, and their concentration. Utilizing the high molecular precision of dendritic amphiphiles, we synthesized polymeric ligands with two distinct architectures, namely, PEG-ditris-triazole amphiphile (DTA) and PEG-monotris-triazole amphiphile (MTA), and explored their CuAAC reactivity through coassembly with commercially available Pluronic P123 amphiphiles. The results indicate that the architecture and the concentration of the polymeric ligands play more dominant roles in influencing the reaction rate than the hydrophobicity of the dendritic blocks. Notably, while MNRs assembled from solely DTA showed a dampened reaction rate, spiking P123 micelles with DTA yielded an MNR with significantly faster rates. Moreover, P123 MNRs spiked with the synthesized MTA demonstrated increased CuAAC reaction rates compared to those spiked with the DTA, and they even outperformed the widely used Tris(benzyltriazolylmethyl)amine ligand. These findings provide valuable insights into the design principles of polymer-based ligands for constructing reactive MNRs and other types of nanoreactors for efficient catalytic transformations.
近年来,纳米反应器的发展,如用于催化转化的胶束纳米反应器(MNRs),因其在提高反应速率、选择性、效率方面的潜力,以及同样重要的在水溶液中进行有机化学的能力而备受关注。其中,铜(I)催化的叠氮化物-炔烃环加成(CuAAC)反应是一个关键的转化反应,广泛应用于生物共轭物、药物和先进材料的合成。本研究旨在加深我们对含有三唑配体的聚合物两亲物作为MNRs中CuAAC反应不可或缺元素的设计和利用的理解。具体而言,我们的研究深入探讨了影响MNRs内反应速率的三个关键因素:疏水性、聚合物配体的结构构型及其浓度。利用树枝状两亲物的高分子精度,我们合成了两种不同结构的聚合物配体,即聚乙二醇-二(三唑)两亲物(DTA)和聚乙二醇-单(三唑)两亲物(MTA),并通过与市售的普朗尼克P123两亲物共组装来探索它们的CuAAC反应活性。结果表明,聚合物配体的结构和浓度在影响反应速率方面比树枝状嵌段的疏水性发挥着更主导的作用。值得注意的是,仅由DTA组装的MNRs显示出反应速率降低,而用DTA使P123胶束尖峰化产生了反应速率明显更快的MNRs。此外,用合成的MTA使P123 MNRs尖峰化显示出与用DTA尖峰化相比CuAAC反应速率增加,并且它们甚至优于广泛使用的三(苄基三唑基甲基)胺配体。这些发现为构建用于高效催化转化的反应性MNRs和其他类型纳米反应器的聚合物基配体的设计原则提供了有价值的见解。