Suppr超能文献

在锂金属电位下通过电化学方法形成双(氟磺酰)亚胺衍生的固体电解质界面。

Electrochemical formation of bis(fluorosulfonyl)imide-derived solid-electrolyte interphase at Li-metal potential.

作者信息

Yu Weilai, Lin Kuan-Yu, Boyle David T, Tang Michael T, Cui Yi, Chen Yuelang, Yu Zhiao, Xu Rong, Lin Yangju, Feng Guangxia, Huang Zhuojun, Michalek Lukas, Li Weiyu, Harris Stephen J, Jiang Jyh-Chiang, Abild-Pedersen Frank, Qin Jian, Cui Yi, Bao Zhenan

机构信息

Department of Chemical Engineering, Stanford University, Stanford, CA, USA.

Department of Chemistry, Stanford University, Stanford, CA, USA.

出版信息

Nat Chem. 2025 Feb;17(2):246-255. doi: 10.1038/s41557-024-01689-5. Epub 2024 Dec 2.

Abstract

Lithium bis(fluorosulfonyl)imide-based liquid electrolytes are promising for realizing high coulombic efficiency and long cycle life in next-generation Li-metal batteries. However, the role of anions in the formation of the solid-electrolyte interphase remains unclear. Here we combine electrochemical analyses and X-ray photoelectron spectroscopy measurements, both with and without sample washing, together with computational simulations, to propose the reaction pathways of electrolyte decomposition and correlate the interphase component solubility with the efficacy of passivation. We discover that not all the products derived from interphase-forming reactions are incorporated into the resulting passivation layer, with a notable portion present in the liquid electrolyte. We also find that the high-performance electrolytes can afford a sufficiently passivating interphase with minimized electrolyte decomposition, by incorporating more anion-decomposition products. Overall, this work presents a systematic approach of coupling electrochemical and surface analyses to paint a comprehensive picture of solid-electrolyte interphase formation, while identifying the key attributes of high-performance electrolytes to guide future designs.

摘要

基于双(氟磺酰)亚胺锂的液体电解质对于在下一代锂金属电池中实现高库仑效率和长循环寿命很有前景。然而,阴离子在固体电解质界面形成过程中的作用仍不清楚。在此,我们结合电化学分析和X射线光电子能谱测量(包括有样品清洗和无样品清洗的情况)以及计算模拟,来提出电解质分解的反应途径,并将界面组分的溶解度与钝化效果相关联。我们发现,并非所有源自界面形成反应的产物都会并入最终的钝化层,有相当一部分存在于液体电解质中。我们还发现,高性能电解质通过纳入更多的阴离子分解产物,能够提供一个具有充分钝化作用的界面,同时使电解质分解最小化。总体而言,这项工作提出了一种将电化学和表面分析相结合的系统方法,以全面描绘固体电解质界面的形成过程,同时确定高性能电解质的关键属性,为未来的设计提供指导。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验