Ranjith Kugalur Shanmugam, Mohammadi Ali, Raju Ganji Seeta Rama, Huh Yun Suk, Han Young-Kyu
Department of Energy and Material Engineering, Dongguk University-Seoul, Seoul, 04620, South Korea.
Department of Biological Sciences and Bioengineering, Nano Bio High-Tech Materials Research Center, Inha University, Incheon, 22212, South Korea.
Nano Converg. 2024 Dec 2;11(1):51. doi: 10.1186/s40580-024-00454-1.
Energy scarcity and environmental pollution have prompted research in hydrogen generation from solar to develop clean energy through highly efficient, effective, and long-lasting photocatalytic systems. Designing a catalyst with robust stability and an effective carrier separation rate was achieved through heterostructure assembly, but certain functionalities must be explored. In this paper we designed a ternary heterostructure assembly of CdS nanospheres wrapped with hierarchical shell walls of layered MXene-tagged MoS nanoflakes, forming intimate interfaces through an in-situ growth process. An in-layered shell wall of MXene with surface-wrapped MoS nanoflakes as a core-shell assembly improved the photo-corrosion resistance and accelerated the production of photocatalytic H (38.5 mmol g h), which is 10.7, 3.1, and 1.9 times faster than that of CdS, CdS-MXe, and CdS-MoS nanostructures, respectively. The apparent quantum efficiency of the CdS-MXe/MoS heterostructure was calculated to be 34.6% at λ = 420 nm. X-ray and ultraviolet photoelectron spectroscopies validated the electronic states, energy band alignment, and work function of the heterostructures, whilst time-resolved photoluminescence measured the carrier lifespan to evaluate the effective charge migration in the CdS-MXe/MoS heterostructure. The dual surface wrapping of MXe/MoS over CdS nanospheres confirmed the structural durability that remained intact throughout the photocatalytic reaction, promoting approximately 93.1% of its catalytic property even after five repeatable cycles. This study examined how the MXene heterostructure template improves the catalytic efficiency and opens a new way to design MXene-based durable heterostructure catalysts for solar-energy conversion.
能源短缺和环境污染促使人们开展从太阳能制氢的研究,以通过高效、有效且持久的光催化系统开发清洁能源。通过异质结构组装实现了具有强大稳定性和有效载流子分离率的催化剂设计,但仍需探索某些功能。在本文中,我们设计了一种三元异质结构组装体,即CdS纳米球被分层的MXene标记的MoS纳米片的壳壁包裹,通过原位生长过程形成紧密界面。以表面包裹MoS纳米片的MXene作为核壳组装体的内层壳壁,提高了光腐蚀抗性,并加速了光催化H的产生(38.5 mmol g h),分别比CdS、CdS-MXe和CdS-MoS纳米结构快10.7倍、3.1倍和1.9倍。计算得出CdS-MXe/MoS异质结构在λ = 420 nm时的表观量子效率为34.6%。X射线和紫外光电子能谱验证了异质结构的电子态、能带排列和功函数,同时时间分辨光致发光测量了载流子寿命,以评估CdS-MXe/MoS异质结构中的有效电荷迁移。MXe/MoS在CdS纳米球上的双重表面包裹证实了其结构耐久性,在整个光催化反应过程中保持完整,即使经过五次重复循环后仍能保持约93.1%的催化性能。本研究考察了MXene异质结构模板如何提高催化效率,并为设计用于太阳能转换的基于MXene的耐用异质结构催化剂开辟了一条新途径。