Liu Yawei, Yang Wenxing, Chen Qiaoli, Cullen David A, Xie Zhaoxiong, Lian Tianquan
Department of Chemistry, Emory University, 1515 Dickey Drive, NE, Atlanta, Georgia 30322, United States.
Center of Artificial Photosynthesis for Solar Fuels, School of Science, Westlake University, Hangzhou, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China.
J Am Chem Soc. 2022 Feb 16;144(6):2705-2715. doi: 10.1021/jacs.1c11745. Epub 2022 Jan 28.
Decreasing the metal catalyst size into nanoclusters or even single atom is an emerging direction of developing more efficient and cost-effective photocatalytic systems. Because the catalyst particle size affects both the catalyst activity and light driven charge separation efficiency, their effects on the overall photocatalytic efficiency are still poorly understood. Herein, using a well-defined semiconductor-metal heterostructure with Pt nanoparticle catalysts selectively grown on the apexes of CdS nanorods (NRs), we study the effect of the Pt catalyst size on light driven H generation quantum efficiency (QE). With the increase of the Pt catalyst size from 0.7 ± 0.3 to 3.0 ± 0.8 nm, the QE of CdS-Pt increases from 0.5 ± 0.2% to 38.3 ± 5.1%, by nearly 2 orders of magnitude. Transient absorption spectroscopy measurement reveals that the electron transfer rate from the CdS NR to the Pt tip increases with the Pt diameter following a scaling law of , giving rise to the increase of electron transfer efficiency at larger Pt sizes. The observed trend can be understood by a simplified kinetic model that assumes the overall efficiency is the product of the quantum efficiencies of charge separation (including hole transfer, electron transfer, and hole scavenging) and water reduction steps, and for CdS-Pt NRs, the quantum efficiencies of electron transfer and water reduction steps increase with the Pt sizes. Our findings suggest the importance of improving the quantum efficiencies of both charge separation and catalysis in designing efficient semiconductor-metal hybrid photocatalysts, especially in the regime of small metal particle sizes.
将金属催化剂尺寸减小至纳米团簇甚至单原子是开发更高效且经济高效的光催化体系的一个新兴方向。由于催化剂粒径会影响催化剂活性和光驱动电荷分离效率,但其对整体光催化效率的影响仍知之甚少。在此,我们利用一种明确的半导体 - 金属异质结构,其中Pt纳米颗粒催化剂选择性地生长在CdS纳米棒(NRs)的顶端,研究Pt催化剂尺寸对光驱动产氢量子效率(QE)的影响。随着Pt催化剂尺寸从0.7±0.3纳米增加到3.0±0.8纳米,CdS - Pt的QE从0.5±0.2%增加到38.3±5.1%,增加了近2个数量级。瞬态吸收光谱测量表明,从CdS NR到Pt尖端的电子转移速率随着Pt直径的增加而增加,遵循 的标度律,这导致在较大Pt尺寸下电子转移效率提高。通过一个简化动力学模型可以理解观察到的趋势,该模型假设整体效率是电荷分离(包括空穴转移、电子转移和空穴清除)和水还原步骤的量子效率的乘积,对于CdS - Pt NRs,电子转移和水还原步骤的量子效率随着Pt尺寸的增加而增加。我们的研究结果表明,在设计高效的半导体 - 金属混合光催化剂时,提高电荷分离和催化的量子效率非常重要,特别是在小金属颗粒尺寸的情况下。