Fischer Christian A, Besora-Casals Laura, Rolland Stéphane G, Haeussler Simon, Singh Kritarth, Duchen Michael, Conradt Barbara, Marr Carsten
Fakultät für Biologie, Ludwig-Maximilians-Universität Munich, Planegg-Martinsried, Munich, 82152 Bavaria, Germany.
Centre for Integrated Protein Science, Ludwig-Maximilians-University, Planegg-Martinsried, Munich, 82152 Bavaria, Germany.
iScience. 2020 Sep 29;23(10):101601. doi: 10.1016/j.isci.2020.101601. eCollection 2020 Oct 23.
While the analysis of mitochondrial morphology has emerged as a key tool in the study of mitochondrial function, efficient quantification of mitochondrial microscopy images presents a challenging task and bottleneck for statistically robust conclusions. Here, we present Mitochondrial Segmentation Network (MitoSegNet), a pretrained deep learning segmentation model that enables researchers to easily exploit the power of deep learning for the quantification of mitochondrial morphology. We tested the performance of MitoSegNet against three feature-based segmentation algorithms and the machine-learning segmentation tool Ilastik. MitoSegNet outperformed all other methods in both pixelwise and morphological segmentation accuracy. We successfully applied MitoSegNet to unseen fluorescence microscopy images of mitoGFP expressing mitochondria in wild-type and mutant adults. Additionally, MitoSegNet was capable of accurately segmenting mitochondria in HeLa cells treated with fragmentation inducing reagents. We provide MitoSegNet in a toolbox for Windows and Linux operating systems that combines segmentation with morphological analysis.
虽然线粒体形态分析已成为研究线粒体功能的关键工具,但对线粒体显微镜图像进行高效量化是一项具有挑战性的任务,也是得出具有统计学稳健性结论的瓶颈。在此,我们展示了线粒体分割网络(MitoSegNet),这是一个经过预训练的深度学习分割模型,使研究人员能够轻松利用深度学习的力量来量化线粒体形态。我们将MitoSegNet的性能与三种基于特征的分割算法以及机器学习分割工具Ilastik进行了测试。MitoSegNet在逐像素分割精度和形态学分割精度方面均优于所有其他方法。我们成功地将MitoSegNet应用于野生型和突变型成虫中表达mitoGFP的线粒体的未见过的荧光显微镜图像。此外,MitoSegNet能够准确分割用诱导片段化试剂处理的HeLa细胞中的线粒体。我们在一个适用于Windows和Linux操作系统的工具箱中提供了MitoSegNet,该工具箱将分割与形态学分析相结合。