Hsieh Annie L, Ganesh Sanika, Kula Tomasz, Irshad Madiha, Ferenczi Emily A, Wang Wengang, Chen Yi-Ching, Hu Song-Hua, Li Zongyu, Joshi Shakchhi, Haigis Marcia C, Sabatini Bernardo L
HHMI, Department of Neurobiology, Harvard Medical School, Boston, MA 02115.
Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115.
Proc Natl Acad Sci U S A. 2024 Dec 10;121(50):e2417420121. doi: 10.1073/pnas.2417420121. Epub 2024 Dec 4.
Gliomas are the most common malignant primary brain tumor and are often associated with severe neurological deficits and mortality. Unlike many cancers, gliomas rarely metastasize outside the brain, indicating a possible dependency on unique features of brain microenvironment. Synapses between neurons and glioma cells exist, suggesting that glioma cells rely on neuronal inputs and synaptic signaling for proliferation. Yet, the locations and properties of neurons that innervate gliomas have remained elusive. In this study, we utilized transsynaptic tracing with an EnvA-pseudotyped, glycoprotein-deleted rabies virus to specifically infect TVA and glycoprotein-expressing human glioblastoma cells in an orthotopic xenograft mouse model, allowing us to identify the neurons that form synapses onto the gliomas. Comprehensive whole-brain mapping revealed that these glioma-innervating neurons (GINs) from brain regions, including diverse neuromodulatory centers and specific cortical layers, known to project to the glioma locations. Molecular profiling revealed that long-range cortical GINs are predominantly glutamatergic, and subsets express both glutamatergic and GABAergic markers, whereas local striatal GINs are largely GABAergic. Electrophysiological studies demonstrate that while GINs share passive intrinsic properties with cortex-innervating neurons, their action potential waveforms are altered. Our study introduces a method for identifying and mapping GINs and reveals their consistent integration into existing location-dependent neuronal networks involving diverse neurotransmitters and neuromodulators. The observed intrinsic electrophysiological differences in GINs lay the groundwork for future investigations into how these alterations relate to the postsynaptic characteristics of glioma cells.
神经胶质瘤是最常见的原发性恶性脑肿瘤,常伴有严重的神经功能缺损和死亡。与许多癌症不同,神经胶质瘤很少转移到脑外,这表明其可能依赖于脑微环境的独特特征。神经元与神经胶质瘤细胞之间存在突触,这表明神经胶质瘤细胞的增殖依赖于神经元输入和突触信号传导。然而,支配神经胶质瘤的神经元的位置和特性仍然不清楚。在本研究中,我们利用EnvA假型化、糖蛋白缺失的狂犬病病毒进行跨突触示踪,以特异性感染原位异种移植小鼠模型中表达TVA和糖蛋白的人胶质母细胞瘤细胞,从而使我们能够识别与神经胶质瘤形成突触的神经元。全面的全脑图谱显示,这些支配神经胶质瘤的神经元(GINs)来自脑区,包括已知投射到神经胶质瘤位置的不同神经调节中心和特定皮质层。分子分析显示,长距离皮质GINs主要是谷氨酸能的,并且有一部分同时表达谷氨酸能和GABA能标记物,而局部纹状体GINs主要是GABA能的。电生理研究表明,虽然GINs与支配皮质的神经元具有相同的被动内在特性,但其动作电位波形发生了改变。我们的研究引入了一种识别和绘制GINs图谱的方法,并揭示了它们一致地整合到涉及多种神经递质和神经调节剂的现有位置依赖性神经元网络中。观察到的GINs内在电生理差异为未来研究这些改变如何与神经胶质瘤细胞的突触后特征相关奠定了基础。