Suppr超能文献

具有受阻路易斯酸碱对的硼氧双掺杂碳氮化物纳米管用于高效电催化氨合成

Boron and Oxygen Dual-Doped Carbon Nitride Nanotubes with Frustrated Lewis Pairs for Efficient Electrocatalytic Ammonia Synthesis.

作者信息

Jiang Meng, Zhu Yuxiang, Jia Zhengtao, Zhong Xiang, Sun Qiufan, Wang Yan, Yao Jianfeng

机构信息

Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China.

出版信息

Small Methods. 2025 May;9(5):e2401672. doi: 10.1002/smtd.202401672. Epub 2024 Dec 4.

Abstract

This work reports boron and oxygen dual-doped carbon nitride nanotubes (B/O-CNNTs) prepared via a copolymerization process for electrocatalytic ammonia synthesis from nitrogen gas (NRR) and nitrate (NORR) sources, respectively. By adjusting the dosage of boron oxide precursor, the texture and content of B/O dual dopants and the coordination environment in the resulting 1D CNNTs can be tuned. The best B/O-CNNTs can achieve maximum Faradaic efficiencies of 35% and 96% at -1.1 V versus RHE with corresponding ammonia yields of 16.7 and 211.4 µg h mg, respectively. A comparatively higher selectivity is achieved in the NRR process compared to NORR. The B/O-induced coordinations boost electron transfer rates along the longitudinal axis. The presence of carbon vacancies and the unique 1D nanotubular structure enhance interactions among reactants. Concurrently, the formed frustrated Lewis pairs are pivotal in activating chemisorbed nitrogen gas or nitrate, resulting in notable accelerations of ammonia generation kinetics. In situ UV-vis spectroscopy reveals that the ideal potential of -1.1 V versus RHE facilitates the involvement of free electrons in the reaction, as it aligns with the conduction potential of B/O-CNNTs. This study paves the way for the design of non-metal-based electrocatalysts with dual dopants for sustainable electrocatalysis toward ammonia synthesis.

摘要

本工作报道了通过共聚过程制备的硼和氧双掺杂氮化碳纳米管(B/O-CNNTs),分别用于从氮气(NRR)和硝酸盐(NORR)源进行电催化氨合成。通过调整氧化硼前驱体的用量,可以调节所得一维CNNTs中B/O双掺杂剂的织构和含量以及配位环境。最佳的B/O-CNNTs在相对于可逆氢电极(RHE)为-1.1 V时,可分别实现35%和96%的最大法拉第效率,相应的氨产率分别为16.7和211.4 μg h mg。与NORR相比,NRNR过程中实现了相对较高的选择性。B/O诱导的配位提高了沿纵轴的电子转移速率。碳空位的存在和独特的一维纳米管结构增强了反应物之间的相互作用。同时,形成的受阻路易斯对在活化化学吸附的氮气或硝酸盐方面起着关键作用,从而显著加速了氨生成动力学。原位紫外可见光谱表明,相对于RHE为-1.1 V的理想电位有利于自由电子参与反应,因为它与B/O-CNNTs的导带电位一致。本研究为设计具有双掺杂剂的非金属基电催化剂以实现可持续的氨合成电催化铺平了道路。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验