文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

使用深度学习进行图像分析以预测乳腺癌分级、雌激素受体状态、组织学亚型和内在亚型。

Image analysis with deep learning to predict breast cancer grade, ER status, histologic subtype, and intrinsic subtype.

作者信息

Couture Heather D, Williams Lindsay A, Geradts Joseph, Nyante Sarah J, Butler Ebonee N, Marron J S, Perou Charles M, Troester Melissa A, Niethammer Marc

机构信息

1Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA.

2Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA.

出版信息

NPJ Breast Cancer. 2018 Sep 3;4:30. doi: 10.1038/s41523-018-0079-1. eCollection 2018.


DOI:10.1038/s41523-018-0079-1
PMID:30182055
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6120869/
Abstract

RNA-based, multi-gene molecular assays are available and widely used for patients with ER-positive/HER2-negative breast cancers. However, RNA-based genomic tests can be costly and are not available in many countries. Methods for inferring molecular subtype from histologic images may identify patients most likely to benefit from further genomic testing. To identify patients who could benefit from molecular testing based on H&E stained histologic images, we developed an image analysis approach using deep learning. A training set of 571 breast tumors was used to create image-based classifiers for tumor grade, ER status, PAM50 intrinsic subtype, histologic subtype, and risk of recurrence score (ROR-PT). The resulting classifiers were applied to an independent test set ( = 288), and accuracy, sensitivity, and specificity of each was assessed on the test set. Histologic image analysis with deep learning distinguished low-intermediate vs. high tumor grade (82% accuracy), ER status (84% accuracy), Basal-like vs. non-Basal-like (77% accuracy), Ductal vs. Lobular (94% accuracy), and high vs. low-medium ROR-PT score (75% accuracy). Sampling considerations in the training set minimized bias in the test set. Incorrect classification of ER status was significantly more common for Luminal B tumors. These data provide proof of principle that molecular marker status, including a critical clinical biomarker (i.e., ER status), can be predicted with accuracy >75% based on H&E features. Image-based methods could be promising for identifying patients with a greater need for further genomic testing, or in place of classically scored variables typically accomplished using human-based scoring.

摘要

基于RNA的多基因分子检测方法已可用于雌激素受体阳性/人表皮生长因子受体2阴性乳腺癌患者,并得到广泛应用。然而,基于RNA的基因组检测成本高昂,且在许多国家无法获得。从组织学图像推断分子亚型的方法可能会识别出最有可能从进一步基因组检测中获益的患者。为了识别那些可基于苏木精和伊红(H&E)染色的组织学图像从分子检测中获益的患者,我们开发了一种使用深度学习的图像分析方法。使用一个包含571个乳腺肿瘤的训练集来创建基于图像的肿瘤分级、雌激素受体状态、PAM50内在亚型、组织学亚型和复发风险评分(ROR-PT)的分类器。将所得分类器应用于一个独立的测试集(n = 288),并在测试集上评估每个分类器的准确性、敏感性和特异性。深度学习的组织学图像分析能够区分低-中级与高级肿瘤分级(准确率82%)、雌激素受体状态(准确率84%)、基底样与非基底样(准确率77%)、导管型与小叶型(准确率94%)以及高与低-中ROR-PT评分(准确率75%)。训练集中的抽样考虑将测试集中的偏差降至最低。Luminal B肿瘤雌激素受体状态的错误分类明显更为常见。这些数据提供了原理证明,即基于H&E特征可以准确预测分子标志物状态,包括关键的临床生物标志物(即雌激素受体状态),准确率>75%。基于图像的方法对于识别更需要进一步基因组检测的患者,或替代通常使用基于人工评分完成的经典评分变量可能很有前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f90a/6120869/3cb4fed7d4e1/41523_2018_79_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f90a/6120869/859091e4f413/41523_2018_79_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f90a/6120869/3cb4fed7d4e1/41523_2018_79_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f90a/6120869/859091e4f413/41523_2018_79_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f90a/6120869/3cb4fed7d4e1/41523_2018_79_Fig2_HTML.jpg

相似文献

[1]
Image analysis with deep learning to predict breast cancer grade, ER status, histologic subtype, and intrinsic subtype.

NPJ Breast Cancer. 2018-9-3

[2]
A deep learning image-based intrinsic molecular subtype classifier of breast tumors reveals tumor heterogeneity that may affect survival.

Breast Cancer Res. 2020-1-28

[3]
Prognostic value of PAM50 and risk of recurrence score in patients with early-stage breast cancer with long-term follow-up.

Breast Cancer Res. 2017-11-14

[4]
Comparison of estrogen receptor, progesterone receptor and HER2 results in concurrent ipsilateral samples with invasive breast carcinoma: a retrospective study of 246 biopsies from 119 patients.

Hum Pathol. 2017-7

[5]
Relationship of histologic grade and histologic subtype with oncotype Dx recurrence score; retrospective review of 863 breast cancer oncotype Dx results.

Breast Cancer Res Treat. 2017-12-11

[6]
Correlation of perfusion parameters on dynamic contrast-enhanced MRI with prognostic factors and subtypes of breast cancers.

J Magn Reson Imaging. 2012-3-5

[7]
Breast cancer histopathology is predictive of low-risk Oncotype Dx recurrence score.

Breast J. 2018-9-19

[8]
Performance of Three-Biomarker Immunohistochemistry for Intrinsic Breast Cancer Subtyping in the AMBER Consortium.

Cancer Epidemiol Biomarkers Prev. 2016-3

[9]
Predicting distant recurrence in receptor-positive breast cancer patients with limited clinicopathological risk: using the PAM50 Risk of Recurrence score in 1478 postmenopausal patients of the ABCSG-8 trial treated with adjuvant endocrine therapy alone.

Ann Oncol. 2013-12-16

[10]
Prognostic Value of the Progesterone Receptor by Subtype in Patients with Estrogen Receptor-Positive, HER-2 Negative Breast Cancer.

Oncologist. 2018-8-31

引用本文的文献

[1]
Exploring the feasibility of AI-based analysis of histopathological variability in salivary gland tumours.

Sci Rep. 2025-8-9

[2]
AI-powered prediction model for neoadjuvant chemotherapy efficacy: comprehensive analysis of breast cancer histological images.

NPJ Precis Oncol. 2025-7-15

[3]
Deep learning assessment of metastatic relapse risk from digitized breast cancer histological slides.

Nat Commun. 2025-7-1

[4]
Predicting estrogen receptor status from HE-stained breast cancer slides using artificial intelligence.

Front Med (Lausanne). 2025-6-9

[5]
DeepTFtyper: an interpretable morphology-aware graph neural network for translating histopathology images into molecular subtypes in small cell lung cancer.

Brief Bioinform. 2025-5-1

[6]
A method for spatial interpretation of weakly supervised deep learning models in computational pathology.

Sci Rep. 2025-6-5

[7]
Corr-A-Net: Interpretable Attention-Based Correlated Feature Learning framework for predicting of HER2 Score in Breast Cancer from H&E Images.

medRxiv. 2025-4-25

[8]
A Multimodal Deep Learning Model for the Classification of Breast Cancer Subtypes.

Diagnostics (Basel). 2025-4-14

[9]
Artificial Intelligence in Histologic Diagnosis of Ductal Carcinoma In Situ.

Mayo Clin Proc Digit Health. 2023-6-25

[10]
A High-Resolution Digital Pathological Image Staining Style Transfer Model Based on Gradient Guidance.

Bioengineering (Basel). 2025-2-16

本文引用的文献

[1]
Racial Differences in PAM50 Subtypes in the Carolina Breast Cancer Study.

J Natl Cancer Inst. 2018-2-1

[2]
A Deep Convolutional Neural Network for segmenting and classifying epithelial and stromal regions in histopathological images.

Neurocomputing (Amst). 2016-5-26

[3]
Patch-based Convolutional Neural Network for Whole Slide Tissue Image Classification.

Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2016

[4]
Deep learning for digital pathology image analysis: A comprehensive tutorial with selected use cases.

J Pathol Inform. 2016-7-26

[5]
Joint analysis of histopathology image features and gene expression in breast cancer.

BMC Bioinformatics. 2016-5-11

[6]
Convolutional Neural Networks for Medical Image Analysis: Full Training or Fine Tuning?

IEEE Trans Med Imaging. 2016-3-7

[7]
Diversity of Breast Carcinoma: Histological Subtypes and Clinical Relevance.

Clin Med Insights Pathol. 2015-12-21

[8]
Performance of Three-Biomarker Immunohistochemistry for Intrinsic Breast Cancer Subtyping in the AMBER Consortium.

Cancer Epidemiol Biomarkers Prev. 2016-3

[9]
Histopathological Image Classification Using Discriminative Feature-Oriented Dictionary Learning.

IEEE Trans Med Imaging. 2016-3

[10]
A Global Covariance Descriptor for Nuclear Atypia Scoring in Breast Histopathology Images.

IEEE J Biomed Health Inform. 2015-6-18

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索