Suppr超能文献

用于乳腺癌分类的综合多组学-组织病理学分析

Integrative multiomics-histopathology analysis for breast cancer classification.

作者信息

Ektefaie Yasha, Yuan William, Dillon Deborah A, Lin Nancy U, Golden Jeffrey A, Kohane Isaac S, Yu Kun-Hsing

机构信息

Department of Biomedical Informatics, Harvard Medical School, 10 Shattuck Street, Boston, MA, 02115, USA.

Department of Pathology, Brigham and Women's Hospital, 75 Francis Street, Boston, MA, 02115, USA.

出版信息

NPJ Breast Cancer. 2021 Nov 29;7(1):147. doi: 10.1038/s41523-021-00357-y.

Abstract

Histopathologic evaluation of biopsy slides is a critical step in diagnosing and subtyping breast cancers. However, the connections between histology and multi-omics status have never been systematically explored or interpreted. We developed weakly supervised deep learning models over hematoxylin-and-eosin-stained slides to examine the relations between visual morphological signal, clinical subtyping, gene expression, and mutation status in breast cancer. We first designed fully automated models for tumor detection and pathology subtype classification, with the results validated in independent cohorts (area under the receiver operating characteristic curve ≥ 0.950). Using only visual information, our models achieved strong predictive performance in estrogen/progesterone/HER2 receptor status, PAM50 status, and TP53 mutation status. We demonstrated that these models learned lymphocyte-specific morphological signals to identify estrogen receptor status. Examination of the PAM50 cohort revealed a subset of PAM50 genes whose expression reflects cancer morphology. This work demonstrates the utility of deep learning-based image models in both clinical and research regimes, through its ability to uncover connections between visual morphology and genetic statuses.

摘要

活检切片的组织病理学评估是乳腺癌诊断和亚型分类的关键步骤。然而,组织学与多组学状态之间的联系从未得到系统的探索或阐释。我们基于苏木精-伊红染色切片开发了弱监督深度学习模型,以研究乳腺癌视觉形态信号、临床亚型、基因表达和突变状态之间的关系。我们首先设计了用于肿瘤检测和病理亚型分类的全自动模型,并在独立队列中验证了结果(受试者操作特征曲线下面积≥0.950)。仅使用视觉信息,我们的模型在雌激素/孕激素/HER2受体状态、PAM50状态和TP53突变状态方面取得了强大的预测性能。我们证明这些模型学习了淋巴细胞特异性形态信号以识别雌激素受体状态。对PAM50队列的检查揭示了一组PAM50基因,其表达反映了癌症形态。这项工作通过其揭示视觉形态与基因状态之间联系的能力,证明了基于深度学习的图像模型在临床和研究领域的实用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2219/8630188/dd6a328272b9/41523_2021_357_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验