Suppr超能文献

等离子体热点的超快热压印

Ultrafast Thermal Imprinting of Plasmonic Hotspots.

作者信息

Askes Sven H C, Garnett Erik C

机构信息

Center for Nanophotonics, AMOLF, Science Park 104, Amsterdam, 1098 XG, The Netherlands.

出版信息

Adv Mater. 2021 Dec;33(49):e2105192. doi: 10.1002/adma.202105192. Epub 2021 Oct 7.

Abstract

Plasmonic photochemistry is driven by a rich collection of near-field, hot charge carrier, energy transfer, and thermal effects, most often accomplished by continuous wave illumination. Heat generation is usually considered undesirable, because noble metal nanoparticles heat up isotropically, losing the extreme energy confinement of the optical resonance. Here it is demonstrated through optical and heat-transfer modelling that the judicious choice of nanoreactor geometry and material enables the direct thermal imprint of plasmonic optical absorption hotspots onto the lattice with high fidelity. Transition metal nitrides (TMNs, e.g., TiN/HfN) embody the ideal material requirements, where ultrafast electron-phonon coupling prevents fast electronic heat dissipation and low thermal conductivity prolongs the heat confinement. The extreme energy confinement leads to unprecedented peak temperatures and internal heat gradients (>10 K nm ) that cannot be achieved using noble metals or any current heating method. TMN nanoreactors consequently yield up to ten thousand times more product in pulsed photothermal chemical conversion compared with noble metals (Ag, Au, Cu). These findings open up a completely unexplored realm of nano-photochemistry, where adjacent reaction centers experience substantially different temperatures for hundreds of picoseconds, long enough for bond breaking to occur.

摘要

等离子体光化学由丰富的近场、热载流子、能量转移和热效应驱动,通常通过连续波照明来实现。发热通常被认为是不理想的,因为贵金属纳米颗粒各向同性地热起来,失去了光学共振的极端能量限制。在此通过光学和热传递建模表明,对纳米反应器几何形状和材料的明智选择能够将等离子体光吸收热点的直接热印记以高保真度印刻到晶格上。过渡金属氮化物(TMNs,例如TiN/HfN)体现了理想的材料要求,其中超快的电子-声子耦合可防止快速的电子热耗散,而低导热率则延长了热限制。极端的能量限制导致了前所未有的峰值温度和内部热梯度(>10 K nm),这是使用贵金属或任何当前加热方法无法实现的。因此,与贵金属(Ag、Au、Cu)相比,TMN纳米反应器在脉冲光热化学转化中产生的产物多高达一万倍。这些发现开辟了一个完全未被探索的纳米光化学领域,其中相邻的反应中心在数百皮秒内经历显著不同的温度,这足以发生键断裂。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0fb0/11468741/e64f4f2dbba4/ADMA-33-2105192-g005.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验