Suppr超能文献

探索用于增强可见光谱光学传感的表面等离激元梯度超表面。

Exploring plasmonic gradient metasurfaces for enhanced optical sensing in the visible spectrum.

作者信息

Huang Shih-Hsiu, Wu Pin Chieh

机构信息

Department of Photonics, National Cheng Kung University, Tainan 70101, Taiwan.

Center for Quantum Frontiers of Research & Technology (QFort), National Cheng Kung University, Tainan 70101, Taiwan.

出版信息

Nanophotonics. 2024 Jan 15;13(7):1099-1108. doi: 10.1515/nanoph-2023-0809. eCollection 2024 Mar.

Abstract

While conventional optical sensors hold historical significance, they face inherent limitations in sensitivity, operational intricacies, and bulky size. A breakthrough in this realm comes from the advent of metasurface sensors, which leverage nanoscale optical effects, thereby expanding the horizons of optical sensing applications. However, past methods employed in metasurface sensors predominantly rely on wavelength shifts or intensity changes with high- resonances, thereby significantly restricting the detection bandwidth. In response to these challenges, this study introduces a plasmonic gradient metasurface-based sensor (PGMS) designed for refractive index detection across a wide wavelength spectrum. Through the utilization of the Pancharatnam-Berry phase method, the PGMS achieves a distinctive 2 phase shift, facilitating the simultaneous generation of specular and deflected beams. The introduction of a far-field intensity ratio (* = / ) amplifies the change in optical response by maximizing the deflected beam's intensity while minimizing specular reflection. Experimental validation attests to the PGMS's consistent performance across diverse media and wavelengths, successfully overcoming challenges associated with oxidation issues. Furthermore, the incorporation of a normalization factor enhances the PGMS's sensing performance and versatility for broadband optical sensing, accommodating variations in the refractive index. Particularly sensitive in green wavelengths, the PGMS demonstrates its potential in visible spectrum applications, such as biomedical diagnostics and environmental monitoring. This research not only addresses challenges posed by conventional sensors but also propels optical sensing technologies into a realm of heightened sensitivity and adaptability.

摘要

虽然传统光学传感器具有历史意义,但它们在灵敏度、操作复杂性和体积庞大方面存在固有局限性。这一领域的突破来自超表面传感器的出现,它利用纳米级光学效应,从而拓展了光学传感应用的范围。然而,超表面传感器过去采用的方法主要依赖于高共振下的波长偏移或强度变化,从而显著限制了检测带宽。针对这些挑战,本研究介绍了一种基于表面等离激元梯度超表面的传感器(PGMS),用于在宽波长光谱范围内进行折射率检测。通过利用庞加莱-贝里相位方法,PGMS实现了独特的2π相移,便于同时产生镜面反射光束和偏转光束。引入远场强度比(* = / )通过最大化偏转光束的强度同时最小化镜面反射来放大光学响应的变化。实验验证证明了PGMS在不同介质和波长下的一致性能,成功克服了与氧化问题相关的挑战。此外,纳入归一化因子提高了PGMS的传感性能和宽带光学传感的通用性,以适应折射率的变化。PGMS在绿色波长下特别敏感,展示了其在生物医学诊断和环境监测等可见光谱应用中的潜力。这项研究不仅解决了传统传感器带来的挑战,还将光学传感技术推进到一个更高灵敏度和适应性的领域。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验