Department of Chemistry, Stanford University, Stanford, California 94305, United States.
Department of Applied Physics, Stanford University, Stanford, California 94305, United States.
J Phys Chem Lett. 2022 May 26;13(20):4455-4462. doi: 10.1021/acs.jpclett.2c00782. Epub 2022 May 13.
Diffusion of biological nanoparticles in solution impedes our ability to continuously monitor individual particles and measure their physical and chemical properties. To overcome this, we previously developed the interferometric scattering anti-Brownian electrokinetic (ISABEL) trap, which uses scattering to localize a particle and applies electrokinetic forces that counteract Brownian motion, thus enabling extended observation. Here we present an improved ISABEL trap that incorporates a near-infrared scatter illumination beam and rapidly interleaves 405 and 488 nm fluorescence excitation reporter beams. With the ISABEL trap, we monitored the internal redox environment of individual carboxysomes labeled with the ratiometric redox reporter roGFP2. Carboxysomes widely vary in scattering contrast (reporting on size) and redox-dependent ratiometric fluorescence. Furthermore, we used redox sensing to explore the chemical kinetics within intact carboxysomes, where bulk measurements may contain unwanted contributions from aggregates or interfering fluorescent proteins. Overall, we demonstrate the ISABEL trap's ability to sensitively monitor nanoscale biological objects, enabling new experiments on these systems.
生物纳米颗粒在溶液中的扩散阻碍了我们持续监测单个颗粒并测量其物理和化学性质的能力。为了克服这一问题,我们之前开发了干涉散射抗布朗运动电动(ISABEL)陷阱,该陷阱利用散射来定位颗粒,并施加电动力量以抵消布朗运动,从而实现了扩展观察。在这里,我们介绍了一种改进的 ISABEL 陷阱,它结合了近红外散射照明光束,并快速交错 405nm 和 488nm 荧光激发报告器光束。使用 ISABEL 陷阱,我们监测了用比率型氧化还原报告器 roGFP2 标记的单个羧化体的内部氧化还原环境。羧化体在散射对比度(报告大小)和氧化还原依赖性比率荧光方面差异很大。此外,我们还利用氧化还原感应来探索完整羧化体内部的化学动力学,其中批量测量可能包含来自聚集体或干扰荧光蛋白的不需要的贡献。总的来说,我们展示了 ISABEL 陷阱灵敏监测纳米级生物物体的能力,为这些系统的新实验提供了可能。