Pai Sunil, Valdez Carson, Park Taewon, Milanizadeh Maziyar, Morichetti Francesco, Melloni Andrea, Fan Shanhui, Solgaard Olav, Miller David A B
PsiQuantum, Formerly Stanford University, Palo Alto, CA, USA.
Stanford University, Electrical Engineering, Stanford, CA, USA.
Nanophotonics. 2023 Jan 4;12(5):985-991. doi: 10.1515/nanoph-2022-0527. eCollection 2023 Mar.
Programmable feedforward photonic meshes of Mach-Zehnder interferometers are computational optical circuits that have many classical and quantum computing applications including machine learning, sensing, and telecommunications. Such devices can form the basis of energy-efficient photonic neural networks, which solve complex tasks using photonics-accelerated matrix multiplication on a chip, and which may require calibration and training mechanisms. Such training can benefit from internal optical power monitoring and physical gradient measurement for optimizing controllable phase shifts to maximize some task merit function. Here, we design and experimentally verify a new architecture capable of power monitoring any waveguide segment in a feedforward photonic circuit. Our scheme is experimentally realized by modulating phase shifters in a 6 × 6 triangular mesh silicon photonic chip, which can non-invasively (i.e., without any internal "power taps") resolve optical powers in a 3 × 3 triangular mesh based on response measurements in only two output detectors. We measure roughly 3% average error over 1000 trials in the presence of systematic manufacturing and environmental drift errors and verify scalability of our procedure to more modes via simulation.
马赫-曾德尔干涉仪的可编程前馈光子网格是一种计算光学电路,在包括机器学习、传感和电信在内的许多经典和量子计算应用中都有应用。此类设备可构成节能光子神经网络的基础,该网络利用芯片上的光子加速矩阵乘法来解决复杂任务,并且可能需要校准和训练机制。这种训练可受益于内部光功率监测和物理梯度测量,以优化可控相移,从而最大化某个任务优值函数。在此,我们设计并通过实验验证了一种能够对前馈光子电路中的任何波导段进行功率监测的新架构。我们的方案通过在一个6×6三角形网格硅光子芯片中调制移相器来实验实现,该芯片可以基于仅在两个输出探测器中的响应测量,以非侵入性方式(即无需任何内部“功率分接头”)解析3×3三角形网格中的光功率。在存在系统制造和环境漂移误差的情况下,我们在1000次试验中测量到的平均误差约为3%,并通过模拟验证了我们的方法对更多模式的可扩展性。