Suppr超能文献

具有近零折射率材料的低损耗、几何形状不变的光波导。

Low-loss, geometry-invariant optical waveguides with near-zero-index materials.

作者信息

Wang Danqing, Dong Kaichen, Li Jingang, Grigoropoulos Costas, Yao Jie, Hong Jin, Wu Junqiao

机构信息

Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, CA, 94720, USA.

Miller Institute, University of California, Berkeley, Berkeley, CA, 94720, USA.

出版信息

Nanophotonics. 2022 Nov 7;11(21):4747-4753. doi: 10.1515/nanoph-2022-0445. eCollection 2022 Dec.

Abstract

Optical materials with nearly zero refractive indices have driven emerging applications ranging from geometry-invariant optical tunneling, nonlinear optics, optical cloaking to thermal emission manipulation. In conventional dielectric photonic circuits, light scattering and back reflection at the waveguide bends and crossings leads to significant optical loss. Here we propose to use near-zero-index materials as a cladding layer for low-loss optical waveguides, where optical modes are tightly confined within the dielectric core region. Compared to conventional waveguides, the near-zero-index waveguides are superior in maintaining a high mode-filling factor for small device sizes close to the diffraction limit and reducing the crosstalk in between at a sub-wavelength separation. In addition, we found that light propagation is robust to waveguide bends in a small radius (∼µm) and geometry variation in the cross section. Hollow waveguides with near-zero-index cladding layers further support low-loss light propagation because materials absorption is minimized from the air core. Our work offers critical insights into future designs of low-loss and miniaturized photonic devices.

摘要

具有近零折射率的光学材料推动了从几何不变光学隧穿、非线性光学、光学隐身到热发射操纵等新兴应用的发展。在传统的介电光子电路中,波导弯曲和交叉处的光散射和背反射会导致显著的光学损耗。在此,我们提议使用近零折射率材料作为低损耗光波导的包层,其中光学模式被紧密限制在介电芯区域内。与传统波导相比,近零折射率波导在保持接近衍射极限的小器件尺寸下的高模式填充因子以及在亚波长间距下减少其间的串扰方面具有优势。此外,我们发现光传播对于小半径(~微米)的波导弯曲和横截面的几何变化具有鲁棒性。具有近零折射率包层的空心波导进一步支持低损耗光传播,因为空气芯使材料吸收最小化。我们的工作为低损耗和小型化光子器件的未来设计提供了关键见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b605/11501372/7f17258a6f75/j_nanoph-2022-0445_fig_001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验