Suppr超能文献

通过共振耦合介电超表面增强分子J聚集体的协同性。

Enhancing cooperativity of molecular J-aggregates by resonantly coupled dielectric metasurfaces.

作者信息

Marangi Marco, Wang Yutao, Wu Mengfei, Tjiptoharsono Febiana, Kuznetsov Arseniy I, Adamo Giorgio, Soci Cesare

机构信息

Centre for Disruptive Photonic Technologies, The Photonics Institute, Nanyang Technological University, Singapore 637371, Singapore.

Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore.

出版信息

Nanophotonics. 2024 Jun 10;13(18):3519-3526. doi: 10.1515/nanoph-2024-0117. eCollection 2024 Aug.

Abstract

J-aggregates are supramolecular assemblies of dyes exhibiting strong absorption and fluorescence with narrow linewidths, as well as large optical nonlinearities, induced by the formation of largely delocalized molecular excitons. The degree of cooperativity achievable in J-aggregates ensembles, however, is limited by local disorder and thermally induced decoherence effects. A way to overcome these limitations and increase molecular exciton delocalization and coherence is to couple the ensemble of highly ordered molecular dipoles to a common electromagnetic mode in an optical resonator. In this work, we use dielectric metasurfaces to alter the radiative properties of coupled J-aggregate films and demonstrate a 5-fold Purcell enhancement of the luminesce intensity and narrowing of the emission directivity down to ∼300 mrad around the normal. These results highlight the potential of designer dielectric metasurfaces to foster the emergence of cooperative phenomena in excitonic systems, including optical nonlinearities and superradiance.

摘要

J聚集体是染料的超分子聚集体,由于形成了高度离域的分子激子,表现出具有窄线宽的强吸收和荧光,以及大的光学非线性。然而,J聚集体集合体中可实现的协同程度受到局部无序和热致退相干效应的限制。克服这些限制并增加分子激子离域和相干的一种方法是将高度有序的分子偶极子集合体与光学谐振器中的公共电磁模式耦合。在这项工作中,我们使用介电超表面来改变耦合J聚集体薄膜的辐射特性,并证明发光强度有5倍的珀塞尔增强,且发射方向性变窄,在法线周围降至约300毫弧度。这些结果突出了定制介电超表面在促进激子系统中协同现象出现方面的潜力,包括光学非线性和超辐射。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/67b0/11501991/4f362824427a/j_nanoph-2024-0117_fig_001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验