Suppr超能文献

结合单光子和双光子聚合实现加速高性能(3 + 1)D光子集成。

Combining one and two photon polymerization for accelerated high performance (3 + 1)D photonic integration.

作者信息

Grabulosa Adrià, Moughames Johnny, Porte Xavier, Brunner Daniel

机构信息

FEMTO-ST/Optics Department, UMR CNRS 6174, University Bourgogne Franche-Comté, 15B avenue des Montboucons, Besançon Cedex, 25030, France.

出版信息

Nanophotonics. 2022 Mar 29;11(8):1591-1601. doi: 10.1515/nanoph-2021-0733. eCollection 2022 Mar.

Abstract

Dense and efficient circuits with component sizes approaching the physical limit is the hallmark of high performance integration. Ultimately, these features and their pursuit enabled the multi-decade lasting exponential increase of components on integrated electronic chips according to Moore's law, which culminated with the high performance electronics we know today. However, current fabrication technology is mostly constrained to 2D lithography, and thermal energy dissipation induced by switching electronic signal lines presents a fundamental challenge for truly 3D electronic integration. Photonics reduces this problem, and 3D photonic integration is therefore a highly sought after technology that strongly gains in relevance due to the need for scalable application-specific integrated circuits for neural networks. Direct laser writing of a photoresin is a promising high-resolution and complementary metal-oxide-semiconductor (CMOS) compatible tool for 3D photonic integration. Here, we combine one and two-photon polymerization (TPP) for waveguide integration for the first time, dramatically accelerating the fabrication process and increasing optical confinement. 3D additive printing is based on femtosecond TPP, while blanket irradiation with a UV lamp induces one-photon polymerization (OPP) throughout the entire 3D chip. We locally and dynamically adjust writing conditions to implement (3 + 1)D -TPP: waveguide cores are printed with a small distance between neighboring writing voxels to ensure smooth interfaces, mechanical support structures are printed at maximal distance between the voxels to speed up the process. Finally, the entire chip's volume not part of waveguide cores or mechanical support is polymerized in a single instance by UV blanket irradiation. This decouples fabrication time from the passive volume's size. We succeed in printing vertical single-mode waveguides of 6 mm length that reach numerical apertures up to NA = 0.16. Noteworthy, we achieve exceptionally low -0.26 dB injection losses and very low propagation losses of -1.36 dB/mm at = 660 nm, which is within one order of magnitude of standard integrated silicon photonics. Finally, the optical performance of our waveguides does not deteriorate for at least ∼3000 h after printing, and remains stable during ∼600 h of continuous operation with 0.25 mW injected light.

摘要

元件尺寸接近物理极限的密集且高效的电路是高性能集成的标志。最终,这些特性及其追求使得集成电子芯片上的元件数量按照摩尔定律实现了长达数十年的指数级增长,这一增长在我们如今所知的高性能电子产品中达到了顶峰。然而,当前的制造技术大多局限于二维光刻,并且开关电子信号线所引起的热能耗散对真正的三维电子集成构成了根本性挑战。光子学减少了这一问题,因此三维光子集成是一种备受追捧的技术,由于对用于神经网络的可扩展专用集成电路的需求,其相关性日益增强。直接激光写入光致抗蚀剂是一种用于三维光子集成的有前景的高分辨率且与互补金属氧化物半导体(CMOS)兼容的工具。在此,我们首次将单光子和双光子聚合(TPP)结合用于波导集成,极大地加速了制造过程并增强了光限制。三维增材打印基于飞秒TPP,而用紫外灯进行全面照射会在整个三维芯片中引发单光子聚合(OPP)。我们局部且动态地调整写入条件以实现(3 + 1)D -TPP:波导芯以相邻写入体素之间较小的距离进行打印,以确保界面平滑,机械支撑结构以体素之间的最大距离进行打印以加快过程。最后,芯片中不属于波导芯或机械支撑的整个体积通过紫外全面照射在单个实例中进行聚合。这将制造时间与无源体积的大小解耦。我们成功打印出长度为6毫米的垂直单模波导,其数值孔径高达NA = 0.16。值得注意的是,在波长为660纳米时,我们实现了极低的 -0.26分贝注入损耗和极低的 -1.36分贝/毫米的传播损耗,这与标准集成硅光子学处于同一数量级。最后,我们的波导的光学性能在打印后至少3000小时内不会恶化,并且在注入0.25毫瓦光的情况下连续运行约600小时期间保持稳定。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5bc0/11501494/952678ca01ac/j_nanoph-2021-0733_fig_001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验