Suppr超能文献

DNA 单分子的确定性位置和取向自组装。

DNA Self-Assembly of Single Molecules with Deterministic Position and Orientation.

机构信息

Department of Physics, University of Fribourg, Chemin du Musée 3, FribourgCH-1700, Switzerland.

Department of Health Technology, Technical University of Denmark, Anker Engelunds Vej 101, 2800Kongens Lyngby, Denmark.

出版信息

ACS Nano. 2022 Oct 25;16(10):16924-16931. doi: 10.1021/acsnano.2c06936. Epub 2022 Sep 6.

Abstract

An ideal nanofabrication method should allow the organization of nanoparticles and molecules with nanometric positional precision, stoichiometric control, and well-defined orientation. The DNA origami technique has evolved into a highly versatile bottom-up nanofabrication methodology that fulfils almost all of these features. It enables the nanometric positioning of molecules and nanoparticles with stoichiometric control, and even the orientation of asymmetrical nanoparticles along predefined directions. However, orienting individual molecules has been a standing challenge. Here, we show how single molecules, namely, Cy5 and Cy3 fluorophores, can be incorporated in a DNA origami with controlled orientation by doubly linking them to oligonucleotide strands that are hybridized while leaving unpaired bases in the scaffold. Increasing the number of bases unpaired induces a stretching of the fluorophore linkers, reducing its mobility freedom, and leaves more space for the fluorophore to accommodate and find different sites for interaction with the DNA. Particularly, we explore the effects of leaving 0, 2, 4, 6, and 8 bases unpaired and find extreme orientations for 0 and 8 unpaired bases, corresponding to the molecules being perpendicular and parallel to the DNA double-helix, respectively. We foresee that these results will expand the application field of DNA origami toward the fabrication of nanodevices involving a wide range of orientation-dependent molecular interactions, such as energy transfer, intermolecular electron transport, catalysis, exciton delocalization, or the electromagnetic coupling of a molecule to specific resonant nanoantenna modes.

摘要

一种理想的纳米制造方法应该允许纳米粒子和分子以纳米级的位置精度、化学计量控制和明确定义的方向进行组织。DNA 折纸技术已经发展成为一种非常通用的自下而上的纳米制造方法,几乎满足了所有这些特性。它能够以化学计量控制的方式对分子和纳米粒子进行纳米级定位,甚至可以沿着预定方向对非对称纳米粒子进行定向。然而,定向单个分子一直是一个挑战。在这里,我们展示了如何通过将 Cy5 和 Cy3 荧光团双链连接到杂交的寡核苷酸链上来将它们掺入具有受控取向的 DNA 折纸中,同时在支架中留下未配对的碱基。增加未配对的碱基数量会导致荧光团连接体的拉伸,从而降低其迁移自由度,并为荧光团提供更多的空间来适应并找到与 DNA 相互作用的不同位置。特别是,我们探索了留下 0、2、4、6 和 8 个未配对碱基的效果,并找到了 0 和 8 个未配对碱基的极端取向,分别对应于分子垂直和平行于 DNA 双螺旋。我们预计这些结果将扩大 DNA 折纸在制造涉及广泛取向依赖性分子相互作用的纳米器件方面的应用领域,例如能量转移、分子间电子传输、催化、激子离域或分子与特定共振纳米天线模式的电磁耦合。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验